Using satellite derived CH4 / CO2 columns in CH4 flux inversions

S. Pandey, S. Houweling, M. Krol, I. Aben, and T. Röckmann

We present a method for assimilating CH_4 / CO_2 measurements from satellites for inverse modeling of CH_4 and CO_2 fluxes in TM5-4DVAR inverse modeling system. Unlike conventional approaches, in which retrieved CH_4 / CO_2 ratios are multiplied by model derived total column CO_2 and only the resulting CH_4 is assimilated, our method assimilates the ratio of CH_4 and CO_2 directly and is therefore called the ratio method. It is a dual tracer inversion, in which surface fluxes of CH_4 and CO_2 are optimized simultaneously. The optimization of CO_2 fluxes turns the hard constraint of prescribing model derived CO_2 fields into a weak constraint on CO_2 , which allows us to account for uncertainties in CO_2 .