The use of FTIR-spectrometry for flux measurements

Hella van Asperen, Thorsten Warneke, Simone Sabbatini, Giacomo Nicolini, Dario Papale, Justus Notholt

JRA1: WP13.2
The evaluation of having FTIR-measurements on ICOS ecosystem sites

InGOS Project Meeting 14-16 October 2014

Outline

- 1) Introduction
- 2) Set up field experiment
- 3) Experiments: results
- 4) Practical considerations use FTIR
- 5) Possible future projects

The use of FTIR-spectrometry to measure GHG

Why use FTIR-spectrometry?

Measure different (greenhouse) gases simultaneously
 CO₂, CH₄, N₂O, CO, ¹³CO₂

- High precision
- Relatively mobile, measurements automated by software
- Possible to connect to different (flux)
 measurement techniques at the same time

Species	Precision (1σ, 10 min)
CO ₂	0.02 ppbv
¹³ CO ₂	0.04 ‰
CH ₄	0.02 ppbv
СО	0.02 ppbv
N_2O	0.06 ppbv

FTIR:

 How to connect to different flux measurement techniques??

Sampling manifold

Sample manifold box

- Flux gradient system
 - Use of sampling bags
 - Sonic anenometer
 - Preferably EC-measurements
- Concentration measurements
 - Automated measurements with 12 inlets

= Flux (μ mol m⁻² s⁻¹)

FTIR:

- Flux gradient system
- Concentration measurements
- Flux chamber(s)

FTIR:

- Flux gradient system
- Concentration measurements
- Flux chamber(s)
- Environmental variables

- 1st field experiment: peatland Himmelmoor: August, November 2012
 - o Presented at last InGOS-meeting

Introduction

Set up field experiment

Experiments: results

Practical considerations

Future projects

- 1st field experiment: peatland Himmelmoor: August, November 2012
 - Presented at last InGOS-meeting
- 2nd field experiment: Denmark, April 2013
 - o N₂O flux chamber intercomparison campaign, organized by RISO
 - o Tomorrow: Talk by Per Ambus & Andreas Ibrom (WP5)

Cooperation with UNITUS, University of Tuscia, Viterbo, Italy

- 3rd field experiment: Italy, August 2013
 - o 'grassland experiment'
- 4th field experiment: Italy, September 2013
 - EC-storage component: Example of multiple concentration measurements
 - Tomorrow: Talk by Dario Papale (WP5)

- 1st field experiment: peatland Himmelmoor: August, November 2012
 - Presented at last InGOS-meeting
- 2nd field experiment: Denmark, April 2013
 - N₂O flux chamber intercomparison campaign, organized by RISO
 - o Tomorrow: Talk by Per Ambus & Andreas Ibrom (WP5)

Cooperation with UNITUS, University of Tuscia, Viterbo, Italy

- 3rd field experiment: Italy , August 2013
 - 'grassland experiment'
- 4th field experiment: Italy, September 2013
 - EC-storage component: Example of multiple concentration measurements
 - Tomorrow: Talk by Dario Papale (WP5)

Grassland experiment: results

Long data set of different concentrations and fluxes....

Grassland experiment: results

Long data set of different concentrations and fluxes

Grassland experiment: results

Focus on:

- 1) Photodegradation
- 2) Comparison Flux Gradient &Eddy Covariance measurements
- 3) del¹³CO₂ measurements

Grassland experiment

1) photodegradation

Grassland experiment: motivation

- Photodegradation: the direct breakdown of organic matter by sunlight produces CO_{2,} CH_{4,} CO
- Important in arid regions

Grassland experiment: motivation

- Photodegradation: the direct breakdown of organic matter by sunlight produces CO_{2,} CH_{4,} CO
- Important in arid regions
- Himmelmoor (peatland northern Germany):

Grassland experiment: motivation

- Photodegradation: the direct breakdown of organic matter by sunlight produces CO₂, CH₄, CO
- Important in arid regions
- Himmelmoor (peatland northern Germany):

Difference between chambers?

- Not for CO₂
- Possibly for CO

Environment not suitable?

Grassland experiment: location

 Cooperation with UNITUS, University of Tuscia, Viterbo, Italy *Dry grassland (Rocca4)*

Advantages:

- photodegradation significant
- comparison EC/FG and chambers
 - Similar footprint

- Different footprint EC/flux gradient and flux chambers
 - not suitable to determine photodegradation
- Comparison between chambers

- Different footprint EC/flux gradient and flux chambers
 - not suitable to determine photodegradation
- Comparison between chambers
 - No difference for CO₂
 - Problem with biotic flux

What we saw in Himmelmoor (Germany)......

What we saw in Himmelmoor (Germany)......

What we see in Italy......

other abiotic process? → thermal degradation

Grassland experiment: thermal degradation CO?

Grassland experiment: thermal degradation CO?

Grassland experiment: netto flux CO

Abiotic fluxes $CO_2 \rightarrow$ we dont observe them

fluxes CO→ sum of biological uptake and abiotic emission

Abiotic flux → Thermal of photodegradation?

most likely thermal degradation

Grassland experiment

2) Comparison Flux Gradient & Eddy Covariance measurements

Grassland experiment: EC versus Flux Gradient

Grassland experiment: EC versus Flux Gradient

Grassland experiment

3) del¹³CO₂ measurements

Grassland experiment: Atmosperic del¹³CO₂

Grassland experiment: Atmosperic del¹³CO₂

Nighttime boundary layer build up→ Keeling plot

Introduction Set up field experiment

Experiments: results

Practical considerations

Future projects

Grassland experiment: Respiratory del¹³CO₂

Introduction

Set up field experiment

Experiments: results

Grassland experiment: Chamber del¹³CO₂

Grassland experiment: Chamber del¹³CO₂

Grassland experiment: Respiratory del¹³CO₂

The use of FTIR-spectrometry for flux measurements:

The use of FTIR-spectrometry for flux measurements:

- Flux gradient system
 - Type of sampling lines (Tefflon/stainless steel)
 - o CO production in/by Tefflon lines
 - Constant flow or stainless steel
 - Type of pumps
 - Location of inlet

Comparison to EC-measurements adds value

The use of FTIR-spectrometry for flux measurements:

- Flux gradient system
 - Type of sampling lines (Tefflon/stainless steel)
 - o CO production in/by Tefflon lines
 - Constant flow or stainless steel
 - Type of pumps
 - Location of inlet

Comparison to EC-measurements adds value

- Flux chamber
 - Transparent/non transparent
 - Temperature measurement in chamber

The use of FTIR-spectrometry for flux measurements:

- Flux gradient system
 - Type of sampling lines (Tefflon/stainless steel)
 - o CO production in/by Tefflon lines
 - Constant flow or stainless steel
 - Type of pumps
 - Location of inlet

Comparison to EC-measurements adds value

- Flux chamber
 - Transparent/non transparent
 - o Temperature measurement in chamber
- Frequent calibration measurements

Possible future projects with FTIR

Using FTIR to measure GHG emissions and concentrations in inland waters

Inland water GHG emissions and concentrations are relatively unknown

Using FTIR to measure at fracking sites

GHG (fluxes) in water

GHG (fluxes) in water

Poster this afternoon:

Measurements of dissolved greenhouse gases in rivers and estuaries using Fourier Transform Infrared (FTIR) spectrometry

Denise Müller, Thorsten Warneke

To summarize

FTIR-spectrometry for flux measurement:

- Combination of flux chamber, flux gradient and concentrations measurements simultaneously was succesfull
- For flux gradient measurements, alongside EC measurements are preferred
- for flux chamber measurements, design (for temperature) should be considered

With FTIR, possible study subjects:

- Photo or thermal degradation
- Eddy covariance versus flux gradient
- (Respiratory) del¹³CO₂-measurements

Thank you & Questions

Special thanks to everyone from the University of Tuscia who supported me during my stay in Italy.

Fieldsite Himmelmoor

Literature on CO-uptake in soils

CO-uptake vs. CO-emission

Uptake: Oxidation by soil bacteria or enzymes

Emission: Chemical decomposition & photodegradation

Conrad & Seiler (1985): CO uptake = $\sim 1 \text{ umol m}^{-2} \text{ h}^{-1}$

Yonemura (2000): CO uptake = \sim 1.5 umol m⁻² h⁻¹

Himmelmoor: 4 nmol per m^2 s = 14.4 umol m^2 h^{-1}

Dependent on temperature & organic matter

Extra slide 2: Flux gradient versus Eddy Covariance

Example of diurnal variation of CO_2 flux measured by the EC-technique and the Flux Gradient technique. From Griffith (2002).

Extra slide 3: Fieldwork Himmelmoor

