

THE USE OF MOBILE MEASUREMENTS TO TRACK REGIONAL SOURCES OF METHANE EMISSIONS IN UK

Giulia Zazzeri¹, D. Lowry¹, R. E. Fisher¹, A. Al-Shalan¹, J. L. France², M. E. Lanoisellé¹, E. G. Nisbet¹

¹ Royal Holloway, University of London
 ² University of East Anglia

The importance of knowing sources

CH₄ sources are **isotopically distinct**:

Biogenic Sources:

¹³C depleted (δ¹³C_{CH₄}<- 50 ‰)

Pyrogenic and thermogenic Sources:

¹³C enriched ($\delta^{13}C_{CH_4}$ > - 50 ‰)

Background isotopic
 value: δ¹³CcH₄ - 47 ‰

Typical isotopic signatures have been revised after sampling campaigns around the source sites

UK Methane Sources	Emission Kt (2012)	Typical δ ¹³ C _{CH4} (‰)
Waste disposal and Landfills	884	-58*
Enteric Fermentation (cows)	745	-66*
Agriculture (Manure Management)	316	-58
Gas Transmission and distribution	189	-36*
Wastewater handling	78	-53*
Coal Mining	76	-51 to -30*
Combustion (Industrial and	43	-25
Domestic)		
Road transport	3	-11*
Biomass Burning	3	-28
UK Total	2337	-57.2

Table 1 ¹³C signatures of UK methane sources, based on measured values (Lowry et al., 2001; Fisher, 2007) and literature review. * indicates values which have been revised by this study. Emission inventories are provided without errors. Errors of measured isotopic values are within ± 3 ‰, except coal. Emission values from NAEI (National Atmospheric Emission Inventories) website.

2

Material and Methodology

- The GGLES mobile greenhouse gas monitoring system includes:
 - a mobile Picarro G2301
 Cavity Ring-Down
 Spectrometer equipped with
 a battery power supply;
 - Climatronics sonic anemometer;
 - Hemisphere GPS receiver ;
 - an air inlet.
- Both CH₄ and CO₂ concentrations columns are displayed on Google Earth in real time
- Sampling upwind and downwind of sources through emission plumes

Google Earth view of CH4 mole fractions around the RHUL campus

Material and Methodology

- CH₄ and CO₂ were measured in our lab with a Picarro G1301 Cavity Ring-Down Spectrometer
- Calibration against NOAA Standards
- The carbon isotopic ratio was measured in ‰ to high precision (+/- 0.05 ‰) by GC-IRMS (Fisher et al., 2006)

Picarro G1301 CRDS (Cavity Ring-Down Spectroscopy)

Trace Gas CF-GC-IRMS (Gas Chromatography – Isotopic ratio Mass Spectrometry)

The Keeling Plot approach

 $C_a = C_b + C_s$

 c_a = atmospheric methane concentration

 c_{b} = background concentration

 c_s = additional concentration component produced by the source

 $\delta^{13} C_a c_a = \delta^{13} C_b c_b + \delta^{13} C_s c_s$

 $\delta^{13} C_a = c_b (\delta^{13} C_b - \delta^{13} C_s)^* 1/c_a + \delta^{13} C_s$

UK Landfill Isotopic Signature

Methane mole fractions plot with GIS Software

Keeling Plot based on samples collected down-wind Mucking Landfill site

Kuwait Landfill Isotopic Signature

UK Natural Gas Isotopic Signature

Keeling Plot based on samples collected downwind of gas works in Staines (a) and of gas terminals in Bacton (b)

4668

410

4668

11

4663

4663

UK Coal Mines signature

Methane Concentrations (ppm)

-50

Ŀ١ 0.0 dandanatanla

0.2

0.1

4653

4653

2

duuli

1/CH4 [1/ppm]

0.3

4658

4658

111

0.4

0.5

Kilometers

Australian Coal Mines signature

CH₄ Mole Fractions [ppm]

Kilometers

Methane from open-cast mines in Sydney Basin is mostly of biogenic origin.

Two stages process can be suggested:

- Progression in coal rank (-50 ‰ for bitumen and -30 ‰ for anthracite)
- 10 ‰ meteoric water depletion (-40 ‰ for Welsh anthracite opencast and -60 ‰ for Australian bituminous opencast).

UK Sewage Works Isotopic Signature: a complicated case

3 sources:

- biological treatment
- biogas releases from the anaerobic digesters
- releases of uncombusted
 biogas from the power station

10

Source mix in central London Diurnal Studies

Source mix in central London Diurnal Studies

20-21/01/14

- A ¹³C enriched signature of -40‰ for air sampled between 2
 p.m. and 7 a.m.
 revealed a mainly fossil
 CH₄ contribution to CH₄
 emissions
- The morning build-up is characterised by a δ¹³C signature related to a biogenic source: this is a *recurrent pattern*

Source mix in central London Diurnal Studies

- Source Signature
 Rose based on
 samples with
 concentrations 10%
 over background
- Lighter isotopic source signatures from the SE Sector
- Methane emissions from the Thames River?

Frequency of counts by wind direction (%)

UK δ^{13} C-CH₄ signatures revised

Methane Source	δ ¹³ C-CH ₄ signatures
Natural Gas	-36 ± 2 (2SD) ‰
Anthracite coal mines	-30 ± 3 (2SD) ‰
Bituminous coal mines	-51 ± 3 (2SD) ‰
Welsh opencast mines	-41± 1 (2SD) ‰
Sewage works: anaerobic digesters	-51 ± 1 (2SD) ‰
Sewage works: secondary treatment	-59 ± 1 (2SD) ‰
Sewage works: power station	-48 ± 1 (2SD) ‰
Landfill sites	-58 ± 3 (2SD) ‰
Enteric fermentation	-66 ± 3 (2SD) ‰

Final source isotopic signatures revised in this study (Zazzeri et al., 2015)

Verification of local methane sources

Inventories Hotspots: Mogden Sewage Works and old landfill sites Mobile Measurements: high mole fractions downwind of Mogden and gas leaks The inclusion of gas leaks in inventories would change the emissions figure

Key Notes

- By driving with the Picarro Mobile Instrument, methane plumes can be identified and transected. The subsequent isotopic analysis of bag samples allows the isotopic signature of methane sources to be defined.
- The survey of methane sources can focus on a specific region, obtaining more precise isotopic values to be used in regional models.
- In areas with multiple sources different source inputs can be distinguished, such as sewage works and urban areas.
- Location of hotspots and source apportioning suggested by inventories can be verified.

ARADAY GIVING HIS CARD TO FATHER THAMES And we hope the Dirty Fellow will consult the learned Professor

Giulia.Zazzeri.2011@live.rhul.ac.uk

References:

Zazzeri, G., Lowry, D., Fisher, R.E., France, J.L., Lanoisellé, M. and Nisbet, E.G. (2015) Plume mapping and isotopic characterisation of anthropogenic methane sources, Atmos. Environ., 110,151-162.

Source mix in central London Biological source

Sewer Network of City of London (planned by Joseph Bazalgette) and Bankside map (1950s) Blue: main sewers

Red: intercepting ones which the main sewers connect to Red crossed: storm relief drains (buried rivers which flow straight to the rivers)

Error calculation

- No Ordinary Least Squared (OLS) method is applied, which assumes errors are confined to the dependant variable
- Both variables are measured with errors and are affected by heteroscedasticity (the error of one variable changes across the range of a second variable that predicts it)

 BCES (Bivariate Correlated Errors and intrinsic Scatter) estimator (Akritas et al., 1996) that accounts for correlated errors between the two variable. It is a well suited approach for computing the slope and the intercept of the Keeling Plot

Sewage Works Isotopic Signature: a complicated case

The importance of knowing methane sources

- Second most important greenhouse gas in terms of its contribution to global warming potential
- Compared to CO₂ short
 life time (~ 9 years) in
 the atmosphere
- Inventories are affected by high uncertainty

"Cutting emissions without verification is like dieting without weighing yourself" (R. Weiss)

CO ₂ 61 %	120-150 yrs
СН 15%	
CH ₄ 1570	9-10 yrs
CFCs 11 %	60-120 yrs
N ₂ O 4 %	170 yrs

UK Methane Inventories 1990-2012 (UK National Atmospheric Emissions Inventories website)