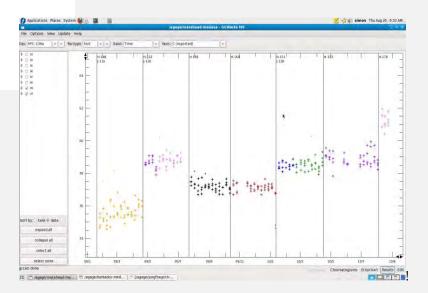
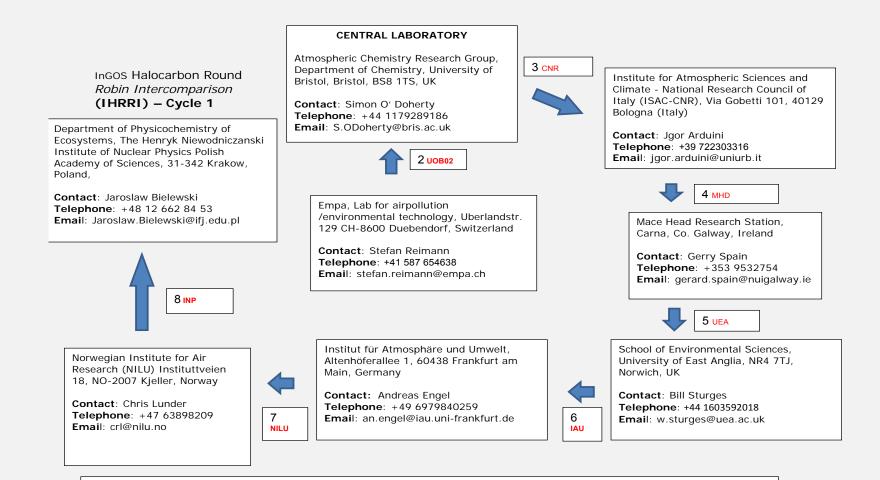

JRA 5/WP17 Basis: Measurement platforms in Europe

Overview WP4/NA4

- To Establish a calibration matrix that relates the calibration scales of each laboratory to one another. This will enable the creation of an integrated, European halocarbon database
- To Establish a quality assurance system for European halocarbons measurements with a calibration standard center and a system of routinely comparing secondary(tertiary) and working(quaternary) standards with the primary AGAGE calibration scales maintained by Scripps Institution of Oceanography (SIO).
- To integrate and harmonise trace gas measurements in Europe, with the result of having a sustainable and reliable observation network for highly time-resolved data across Europe.


Halocarbon Calibration


University of Bristol (UK), Mace Head (Ireland), Empa (Switzerland), NILU (Norway), University of Urbino (Italy).

University of Frankfurt (Germany), University of Krakow (Poland), NUIG (Ireland), Zugspitze (Germany).

	SF ₆	SIO-05	CFC-11	SIO-05
	CF ₄	SIO-05	CFC-12	SIO-05
	C ₂ F ₆	SIO-07	CFC-13	SIO-UB-p
	C ₃ F ₈	SIO-07	CFC-113	SIO-05
	c-C ₄ F ₈	SIO-10-p	CFC-114	SIO-05
	HFC-23	SIO-07	CFC-115	SIO-05
	HFC-32	SIO-07	H-1211	SIO-05
	HFC-134a	SIO-05	H-1301	SIO-05
	HFC-152a	SIO-05	H-2402	NOAA-1992-p
	HFC-125	UB-98	CH₃CI	SIO-05
	HFC-143a	SIO-07	CH₃Br	SIO-05
HFC-227ea		Empa-2005	CH₃I	NOAA-Dec09
HFC-236fa		Empa-2009-p	CH ₂ Cl ₂	UB-98
HFC-43-10mee		SIO-10-p	CH ₂ Br ₂	NOAA-Jul10-p
HFC-365mfc		Empa-2003	CHCl₃	SIO-98
	HFC-245fa	Empa-2005	CHBr ₃	NOAA-Dec09-p
	HCFC-22	SIO-05	CCl ₄	SIO-05
	HCFC-141b	SIO-05	CH₃CCI₃	SIO-05
	HCFC-142b	SIO-05	CHCI=CCI ₂	UB-98
	HCFC-124	NOAA-2003B	CCl ₂ =CCl ₂	NOAA-2003B
	HCFC-123	-		

Round Robin route

- * Tanks initially air filled and analysed at Empa
- *†* Intermediate analysis during transport cycle
- *‡* Route leg reference number for invoicing

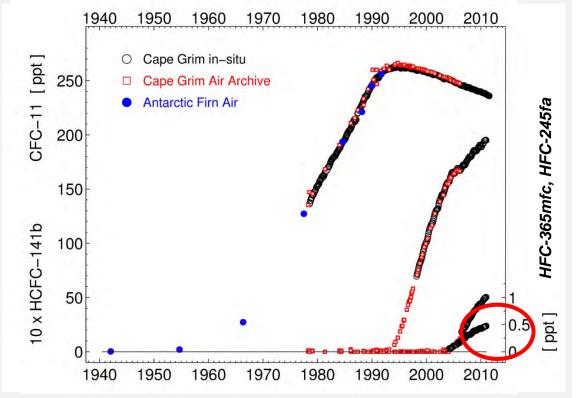
JRA 5: Objectives

• To detect and quantify "new" halogenated greenhouse gases (GHGs) in the atmosphere, with the aim of creating an early-warning tool for potential threats to the climate and the environment, and to comprehensively determine the occurrence and abundance of all such strong GHGs in the atmosphere, many of which are not presently monitored nor even quantified.

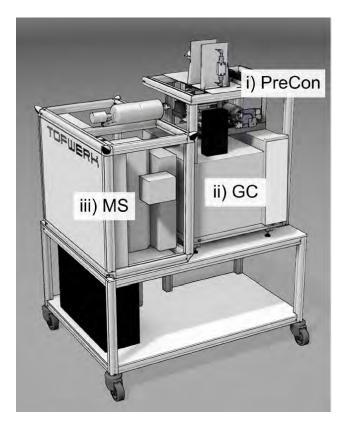
• To implement new Time-of-Flight – Mass Spectrometer (ToF-MS) to evaluate its potential as a new tool for long-term monitoring of halocarbons at ground stations and to use the resulting full scan mass spectra for use as a "virtual air archive".

• To further develop the existing state-of-the art in Gas Chromatography – Mass Spectrometry (GCMS) technology, developing a more efficient and more precise and accurate European network for halogenated greenhouse gases.

History of synthetic halogenated compounds

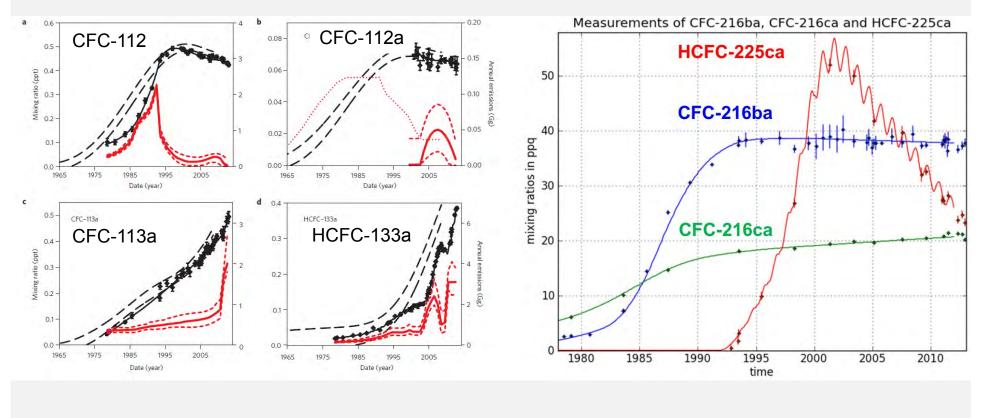

- 1950s: 1st generation: chlorofluorocarbons (CFCs), halons: Cl, F, Br, -
- 1990s: 2nd generation: hydrochlorofluorocarbons (HCFCs): H, Cl, F, -
- 1990s: 3rd generation: hydrofluorocarbons (HFCs),

perfluorocarbons (PFC): H, F, -


2010s: 4th generation hydrohaloalkenes

(hydrohaloolefines, hydrofluoroolefines, HFOs)

H, Cl, F, =



New GC-TOFMS installation tested for continuous measurements

New CFCs and HCFCs

ppt

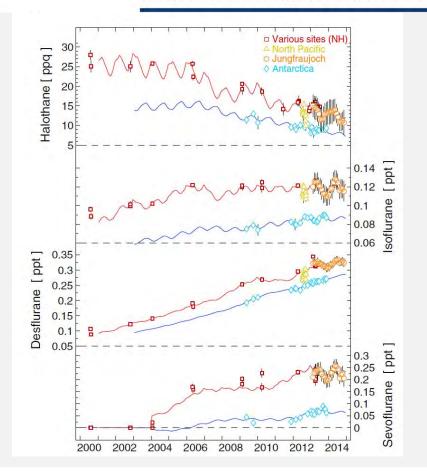
Laube et al. (Nature Geoscience ,2014)

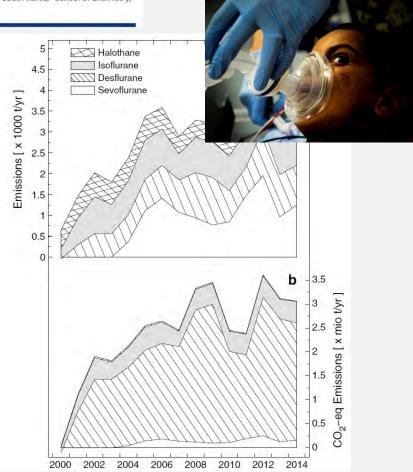
Kloss et al., Atmosphere, 2014

Anaesthetics

Geophysical Research Letters

RESEARCH LETTER

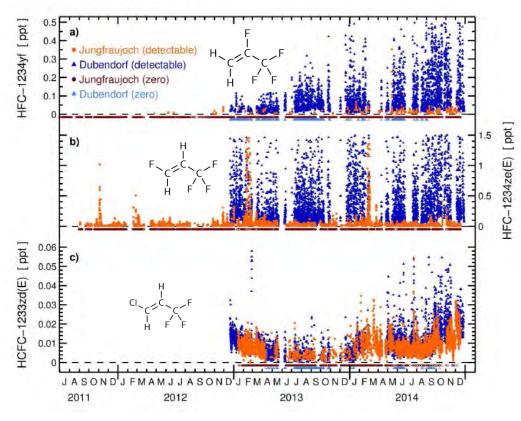

10.1002/2014GL062785

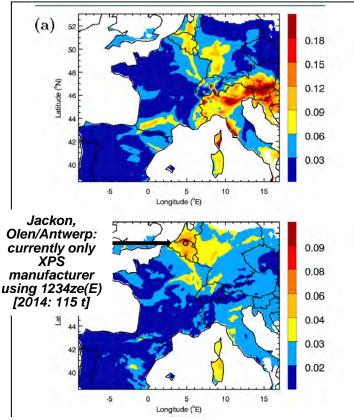

Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

Key Points: • Measurements of potent greenhouse gases • Emissions for the fluranes are increasing • Halothane declines

Martin K. Vollmer¹, Tae Siek Rhee², Matt Rigby³, Doris Hofstetter⁴, Matthias Hill¹, Fabian Schoenenberger¹, and Stefan Reimann¹

¹Laboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland, ²Korea Polar Research Institute, KIOST, Incheon, South Korea, ³School of Chemistry, University of Bristol, Bristol, United Kingdom, ⁴Alphacare, Zurich, Switzerland

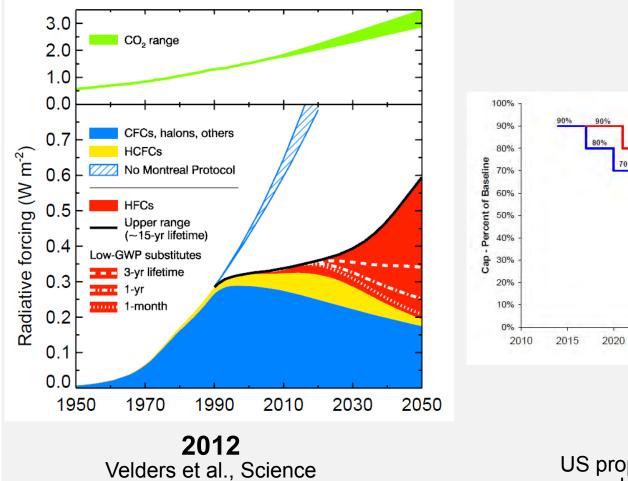



DOI: 10.1021/es505123x Environ. Sci. Technol. 2015, 49, 2703–2708

First Observations of the Fourth Generation Synthetic Halocarbons HFC-1234yf, HFC-1234ze(E), and HCFC-1233zd(E) in the Atmosphere

Martin K. Vollmer,* Stefan Reimann, Matthias Hill, and Dominik Brunner

Laboratory for Air Pollution/Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, 8600, Switzerland



Article

pubs.acs.org/est

Instead of a conclusion... CFCs/HCFCs/HFCs in the future

2015 US proposal of phase-down plan under the Montreal Protocol

70%

50%

2025

50%

30%

2030

Years

15%

2035

Non-A5 Reduction Steps

15%

2045

2050

A5 Reduction Steps

2040