What have we learned from three decades of atmospheric CH₄ measurements?

E. Dlugokencky¹, M. Crotwell^{1,2}, A. Crotwell^{1,2}, P.M. Lang¹, K.A. Masarie¹, L. Bruhwiler¹ ¹NOAA ESRL GMD, ²CIRES,

Outline

- NOAA CH₄ data
 Quality control
- Long term trends
 - Approach to steady state
 - Estimates of emissions
- Interannual Variability

 Eruption of Mt. Pinatubo
- Renewed increase since 2007
 Possible causes
- Summary and Conclusions

GMD Cooperative Global Air Sampling Network

Quality Control

1991: Pinatubo and the CH₄ Lifetime

Eruption: 15 June 1991 20 MT SO₂ oxidized to SO₄⁻² 3 to 5 km³ ash

Affects [OH] by affecting photochemistry: Direct absorption of UV by SO₂ Scattering of UV by ash and aerosols

Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Madronich (1996), Geophys. Res. Lett., 23(20), 2761–2764, doi:10.1029/96GL02638.

Chemistry

(Largest term in CH₄ budget)

 $OH + CH_4 \rightarrow CH_3 + H_2O$

$$\begin{split} O_3 + hv (330 \ge \lambda \ge 290 \text{ nm}) &\rightarrow O(^1D) + O_2 \\ O(^1D) + H_2O &\rightarrow 2 \text{ OH} \\ \text{Rate of formation } O(^1D) = j [O_3] \\ j = \int F(\lambda) \sigma(\lambda) \phi(\lambda) d\lambda \end{split}$$

Also affected CO

Precipitation anomalies in tropical wetlands. (Source: GPCP)

SOI: Australian BoM

Increased Amazon CH_4 fluxes in wet years.

Consistent with decrease in δ^{13} C of CH₄

No measureable change in Arctic CH_4 emissions.

Dlugokencky, E. J., et al.,Geophys. Res. Lett., 30(19), 1992, doi:10.1029/ 2003GL018126, 2003.

Interpolar difference (53-90°)

Summary and Conclusions

- No trend in global emissions: 1984-2006
 - Emissions from some sectors changing
 - Changes in WL emissions may have masked increased anthropogenic emissions
- Much to learn about processes from IAV
- Increased GR and emissions since 2007 – Changes in tropical precipitation (ENSO) – δ^{13} C (CH₄) indicates microbial source
- 2014: CH₄ GR surged (≥12 ppb)
 Globally warm, Amazon wet, but reasons unclear

From BP Statistical Review of World Energy, 2015

Possible changes to CH₄ emissions

- Rice: changing water management ↓
- FF sector: decreased venting and flaring ↓
- Emissions mitigation: M2M ↓
- FF emissions: hydraulic fracturing [↑]
- Arctic permafrost and hydrates [↑]

Global CH₄ Budget by Source

Source	Bousquet (Tg/yr)	IPCC Range (Tg/yr)
Anthropogenic		
Energy	110±13	74-106
Enteric fermentation	90±14	76-92
Rice agriculture	31±5	31-112
Biomass burning	50±8	14-88
Waste	55±11	35-69
Natural		
Wetlands	147±15	100-231
Termites	23±4	20-29
Oceans	19±6	4-15
Total	525±8	503-610
Sinks	Bousquet (Tg/yr)	IPCC (Tg/yr)
Troposphere	448±1	428-511
Stratosphere	37±1	30-45
Soil	21±3	26-34
Total	506	492-581

Bousquet et al., 2006, Nature, 443, 439-443, doi:10.1038/nature05132.