Are high-latitude wetland emissions of CH₄ increasing?

An analysis of seasonal variations in high-latitude NOAA/ESRL CH₄ mole fraction data

James Barlow, Lori Bruhwiler, Paul Palmer

CH₄ data provided by National Oceanic and Atmospheric Administration (Thanks Ed)

CH₄ continues to rise...

Large uncertainties in global CH₄ budget

Warming Arctic could be supporting greater methanogenesis and potential increase in emission of CH₄ from wetlands.

Can anything be detected at highlatitude CH₄ flask sites?

Decreasing values of δ^{13} C over past decade suggest increasing microbial source ... but from tropics, mid-latitudes or high-latitudes?

Observed decrease in CH₄ seasonal cycle amplitude at high-latitude sites

High-latitude wetland seasonal cycle is not in phase with "background" CH₄ seasonal cycle

Hypothesis: Increasing wetland emissions are reducing seasonal cycle amplitude by `filling in' seasonal cycle minima

Models help to disentangle complex observed variations, linking changes in emissions to changes in the seasonal cycle

TM5 Atmospheric Transport Model

Timespan: 1980 - 2010

Horizontal Resolution: 4º latitude x 6º longitude

Vertical Resolution: 34 hybrid sigma pressure levels

Meteorology: ECMWF

Anthropogenic emissions: EDGAR

High-latitude wetland source prior: 25Tg/yr

Simulations

Background:

Control simulation (constant emissions)
EDGAR simulation (varying anthropogenic)

High-latitude wetland scenarios:

0.5%/yr, 1%/yr, 2%/yr

+ natural variability

Emissions from anthropogenic sources and wetlands can explain observed trend

Regression Coefficients (ppb/yr)

	Control	EDGAR
0.0%/yr	-0.02±0.38	-0.45±0.42*
0.5%/yr	-0.12±0.38	-0.54±0.42*
1.0%/yr	-0.21±0.38	-0.63±0.42**
2.0%/yr	-0.39±0.38*	-0.81±0.42**

Observed: - 0.58±0.42**

- Meteorology drives much interannual variability in the seasonal amplitude but not the trend
- Anthropogenic emissions from EDGAR lead to significant decrease in amplitude but not as large as observed
- High-latitude wetland emissions can explain remaining trend

Disentangling Signals

- Seasonal wetland signal peaks towards end of summer/beginning of autumn, coinciding with maxima/ascending edge of CH₄ seasonal cycle
- Increase in seasonal peak leads to reduction in amplitude

- Seasonal anthropogenic signal peaks in December/January, coinciding with maxima of CH₄ seasonal cycle
- Decrease in seasonal peak leads to reduction in amplitude

Summary

- Observed decrease in CH₄ seasonal amplitude at some high northern latitude sites
- Atmospheric transport drives significant interannual variability in the seasonal amplitude but not the trend.
- If we assume that the anthropogenic emissions in the TM5 model experiments are correct, this suggests that up to 75% of the amplitude trend could be in response to changes in anthropogenic emissions.
- An additional change of +0.73%/yr (relative to 25Tg prior) in high-latitude wetland emissions would explain remaining change (25%).

