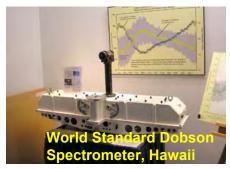


World Meteorological Organization

Weather • Climate • Water

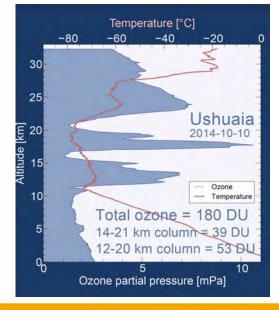
Global framework for observations and analysis of greenhouse gases in the atmosphere: Global Atmosphere Watch Programme

Oksana Tarasova, World Meteorological Organization


WMO: Research Department

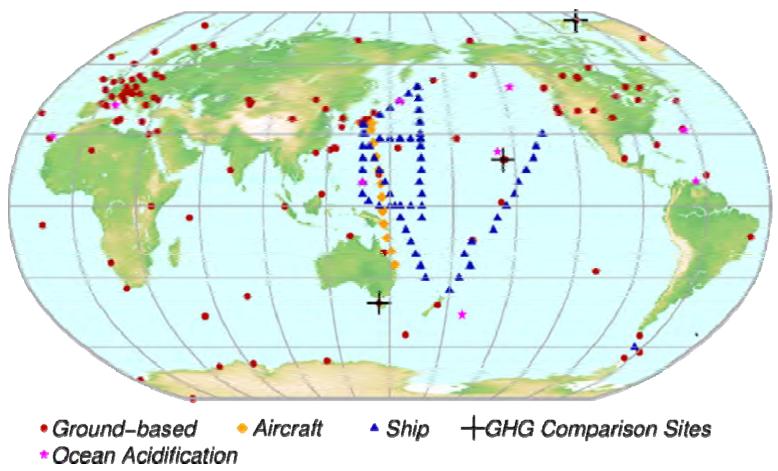
Global Atmosphere Watch Programme

- The programme of the **World Meteorological Organization** (WMO) that coordinates long-term global observations and analysis of atmospheric composition changes
- GAW is a partnership involving contributors from 100 countries
- GAW implements end-to-end approach (from observations through research to delivered products and services)
- GAW includes observational network, quality assurance system, data and metadata infrastructure, expert groups
- GAW supports different applications, including climate studies, air quality forecasting, Numerical Weather Prediction etc.
- GAW builds capacity of Members through publications, expert meetings, dedicated training and partnerships



Variables addressed in GAW

- Stratospheric ozone and vertical ozone distribution
- Greenhouse Gases (CO₂ and its isotopes, CH₄ and its isotopes, N₂/O₂ ratio, N₂O, SF₆, H₂, CFCs and substitutes)
- Reactive Gases (O_3 , CO, VOCs, NO_x , SO_2)
- Total Atmospheric Deposition
- Aerosols (chemical and physical properties, AOD)
- UV Radiation



Baseline GAW GHG Network

The network consists of 141, 123 and 49 fixed stations on the ground for CO_2 , CH_4 and N_2O respectively. About 13%, 13% and 18% of the stations perform both discrete air sampling in "flasks" and continuous measurements of CO_2 , CH_4 and N_2O , respectively.

Contributions to comprehensive GHG observational network

- Additional non-background sites
- In situ tall towers and aircraft vertical profiles at 17 sites operated by NOAA/ESRL
- Japan Meteorological Agency (JMA) ship and aircraft observations
- Regular commercial aircraft observations in the CONTRAIL project
- Greenhouse gas measurements (CO₂ and CH₄) are part of the IAGOS-ERI project.

The Total Carbon
Column Observing
Network (TCCON) is a
contributing network to
GAW

Attributes of the GAW observations

- Multi-national and multi-agency
- Global in nature
- Diverse in measurement approach (flask sampling, continuous, remote sensing techniques)

BUT:

- -Have to be comparable between countries
- -Have to be compared with and assimilated into the global models
- -Have to be compared with the satellite observations (one instrument per globe)

Quality Management principles

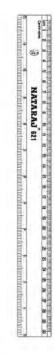
- ✓ Network-wide use of only one reference standard or scale (*primary standard*). In consequence, there is only one institution that is responsible for this standard.
- ✓ Full traceability to the *primary standard* of all measurements made by Global, Regional and Contributing GAW stations.
- ✓ The definition of data quality objectives (DQOs).
- ✓ Establishment of guidelines on how to meet these quality targets, i.e., harmonized measurement techniques based on Measurement Guidelines (MGs) and Standard Operating Procedures (SOPs).
- ✓ Establishment of MGs or SOPs for these measurements.
- ✓ Use of detailed log books for each parameter containing comprehensive meta information related to the measurements, maintenance, and 'internal' calibrations.
- ✓ Regular independent assessments (system and performance audits).
- ✓ Timely submission of data and associated metadata to the responsible World Data Centre as a means of permitting independent review of data by a wider community.

Central Facilities

Five types of central facilities:

- Central Calibration Laboratories (CCLs)
- Quality Assurance/Science Activity Centres (QA/SACs)
- World Calibration Centres (WCCs)
- Regional Calibration Centres (RCCs)
- World Data Centres (WDCs)

Data Quality Objectives for GHG


Component	Compatibility goal	Extended compatibility goal	Range in unpolluted troposphere	Range covered by the WMO scale
CO ₂	± 0.1 ppm (Northern hemisphere) ± 0.05 ppm (South. hemisphere)	± 0.2 ppm	380 - 450 ppm	250 – 520 ppm
CH ₄	± 2 ppb	± 5 ppb	1750 – 2100 ppb	300 – 5900 ppb
CO	± 2 ppb	± 5 ppb	30 – 300 ppb	30 - 500 ppb
N ₂ O	± 0.1 ppb	± 0.3 ppb	325 – 335 ppb	260 – 370 ppb
SF ₆	± 0.02 ppt	± 0.05 ppt	8 – 10 ppt	2.0 – 20 ppt
H ₂	± 2 ppb	± 5 ppb	400 – 600 ppb	140 -1200 ppb
δ ¹³ C-CO ₂	± 0.01‰	± 0.1‰	-7.5 to -9.5‰ vs. VPDB-CO2	
δ ¹⁸ O-CO ₂	± 0.05‰	± 0.1‰	-2 to +2‰ vs. VPDB-CO2	
Δ ¹⁴ C-CO ₂	± 0.5‰	± 3‰	-50 - 50‰	
Δ14C-CH ₄	± 0.5‰		50 - 350‰	
Δ ¹⁴ C-CO	± 2 molecules cm ⁻³		0-25 molecules cm ⁻³	
δ ¹³ C-CH ₄	± 0.03‰	± 0.2‰		
δD-CH ₄	± 1‰	± 5‰		
O ₂ /N ₂	± 2 per meg	± 10 per meg	-400 to -900 per meg (vs. SIO scale)	

Current WMO Scales for GHG

- WMO CO₂ X2007
- WMO CH₄ X2004A
- WMO CO X2014
- WMO N₂O X2006A
- WMO SF₆ X2014
- WMO H₂ X2009
- JRAS-06

Central Calibration Laboratories

Host of WMO World Reference Standards for long-lived GHG

- CO₂, CH₄, N₂O, CO, SF₆ NOAA ESRL, USA
- H₂, CO₂ isotopes MPI –BG, Jena

Collaboration with International Bureau of Weights and Measures (BIPM) under the formal Mutual Recognition Arrangements allows NOAA to represent WMO in key comparisons (coordinated by CCQM)

K-68: N_2O (2008)

K-82: CH_4 (2013)

K-84: CO (2012)

K-120: CO₂ (planned 2016)

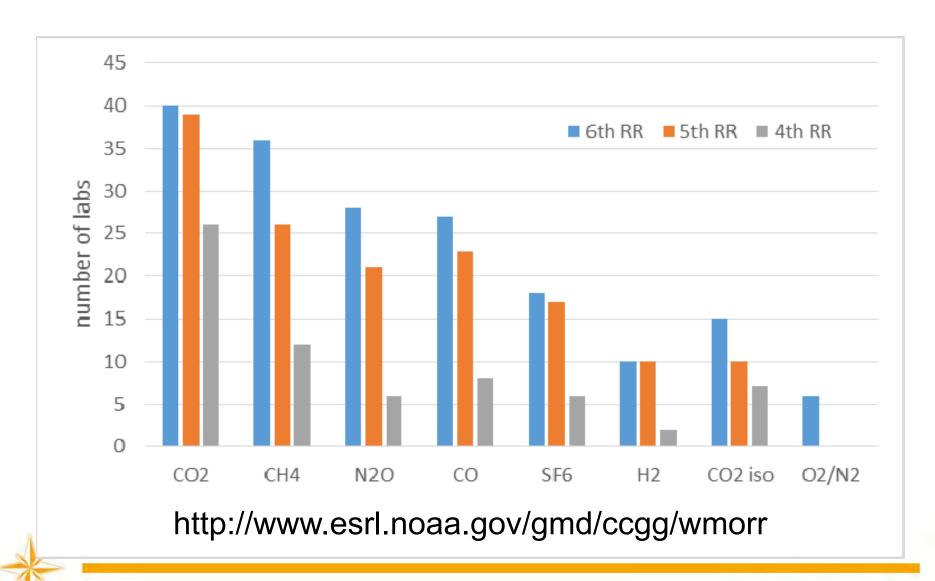
K-xxx: N_2O (planned 2018)

World Calibration Centres

Linking Observations to World Reference Standards and Ensuring Network Comparability through comparison campaigns and regular audit

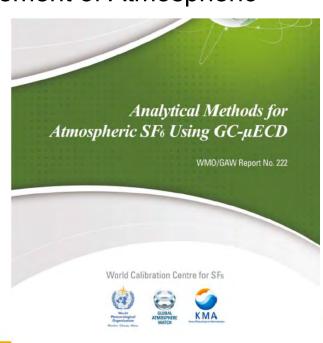
CO ₂	- NOAA ESRL USA - EMPA, Switzerland (audits)	
CH ₄	- EMPA, Switzerland (Am,E/A) - JMA, Japan (A/O)	
N ₂ O	Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research, IMK-IFU, Garmisch-Partenkirchen, Germany	
SF ₆	Korea Meteorological Administration	

WMO Round-Robin comparisons



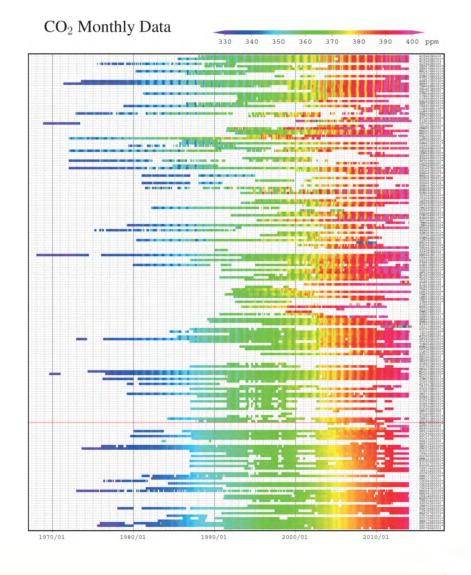
- In reference to WMO goals for compatibility, the purpose of the WMO Round-Robin (RR) reference gas intercomparison would be NOT to distribute calibration scales, but to verify how well the WMO scale is propagated to each of the participating lab, and to the relevant field measurements if they routinely uses WMO standards directly.
- The 6th Round Robin started in January 2014 and officially closed on 7 September 2015.
- Laboratories in each of the 5 circuits (Circuit 1: 13 labs,
 Circuit 2: 8 labs, Circuit 3: 10 labs, Circuit 4: 11 labs, Circuit
 5: 6 labs) received a set of two RR cylinders.
- As in previous RR, air in each cylinder is near ambient range of CO₂, CH₄, CO, H₂, N₂O, SF₆, O₂/N₂, and δ¹³C and δ¹⁸O of CO₂.

WMO Round-Robin comparisons



Measurement Guidelines

- CO₂ measurement guidelines to be finalized in 2016
- GAW Report 188 Revision of the World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, November 2009.
- GAW Report 185 Guidelines for the Measurement of Methane and Nitrous Oxide and their Quality Assurance, September 2009
- GAW Report 192 Guidelines for the Measurement of Atmospheric Carbon Monoxide, July 2010.
 - No measurement guidelines for H_2 , SF_6 , O_2/N_2 , or isotopic measurements
 - General recommendations related to quality assurance are summarized in GGMT meeting recommendations
 - Most of measurement guidelines are 5+ years old



GAW

Availability of the observational data

- GHG data from the GAW stations are archived at the World Data Centre for Greenhouse Gases (WDCGG) operated by Japan Meteorological Agency
- WDCGG performs global analysis (results are reported in the Annual Greenhouse Gas Bulletin)
- WDCGG publishes annual Data Summary

Thank you for your attention!