

Materials Science & Technology

Recently discovered greenhouse gases HCFC-31 and HCFC-133a in the atmosphere

F. Schoenenberger, M. K. Vollmer, M. Hill, S. Wyss, S. Henne, C. Zellweger, S. Reimann, L. Emmenegger, T. Peter

University of Bristol: M. Rigby, A. Wenger, D. Young, S. O'Doherty University of East Anglia: J. C. Laube, L. J. Gooch, D. E. Oram, W. T. Sturges CSIRO: L. P. Steele, R. L. Langenfelds, P. B. Krummel, P. J. Fraser KIOST: T. S. Rhee Max Plank Institute: C. A. M. Brenninkmeijer N.C. University of Taiwan: J-L. Wang, C-F. Ou-Yang

Motivation

Identify, monitor & serve as early warning system

Growing number of industrially produced halogenated compounds

Growing number of possible **feedstock/intermediate** products

Properties

(Carpenter and Reimann et al., 2014; McGillen et al., 2015)

InGOS Int. Conference – 23. Sept. 2015

EMPA *

HCFC-31

HCFC-133a

InGOS Int. Conference – 23. Sept. 2015

InGOS Int. Conference – 23. Sept. 2015

Global Emissions

Modelled global emissions (AGAGE 12-box-model)

HCFC-31

Industrial Production

Industrial Production

Decay Product

Degradation of CFC-11 in shredded residue landfills under anaerobic conditions by methanogenic bacteria (Scheutz et al., 2003/2008/2012; Balsiger et al., 2005)

EMPA

 Low emissions of HCFC-31 detected during a field study at a Danish waste facility (Scheutz et al., 2010)

InGOS Int. Conference – 23. Sept. 2015

EMPA *

- Rapid reversal of global emissions points to source under immediate human control
 - Emissions due to poorly optimized production conditions
 - Reduction due to improvements at one or a few factories
 - Reduction of HFC-32/HFC-134a production in emitting factory

 Major HFC-32 consumption starting around 2000 in developed countries/ 2005 in developing countries (G. Velders, unpublished data)

EMP

Summary

- HCFC-31 and HCFC-133a were rising in the atmosphere until 2012 but declined steeply afterwards.
- Degradation of CFC-11 can produce HCFC-31, which seems to be a minor source of this substance.
- HCFC-31 is an intermediate during the synthesis of HFC-32
- HCFC-133a is a intermediate during the synthesis of HFC-134a
- Industrial production and environmental degradation processes can lead to unforeseen emissions of ozone-depleting substances.
- Scanning the atmosphere for new substances stays vital to serve as an early warning system

EMP

IAC*ETH*

EMPA

Materials Science & Technology

Methods

- Purchase raw materials
- Investigate chromatographic properties and mass spectra
 - Retention Times
 - Favourable mass fragments
- Produce standards with near ambient concentrations (lower ppt range)
- Instrument/Lab work
 - stability of compounds, blanks, nonlinearities,...)
- Measurements

Atmospheric VMR

InGOS Int. Conference – 23. Sept. 2015

Medusa GCMS

Medusa Preconcentration Unit:

- Hayesep-D packed cold traps cooled to -160°C
- Desorption at ~100°C
- Volumes:
 - Flasks generally 4L
 - In situ 2L
- Connected to:
 - Gas chromatograph (Agilent 6890N)
 - Mass spectrometer (Agilent 5975 MS)

AGAGE 12-box-mode

- 4 equal-mass latitudinal sections (90°N-30°N, 30°N-0°, 0°-30°S, 30°S-90°S)
- 3 vertical layers (500 hPa, 200 hPa)
- No advection across tropopause (troposphere-stratosphere exchange determined by single mixing time-scale)
- Mixing timescales between 4 stratospheric boxes, arbitrarily set to 100 days (Cunnold, 1994)
- Emissions are assumed to be instantaneously mixed throughout the lowest boxes.
- Loss processes:
 - Instantaneous loss rate in any box (parameterizing, e.g. photolysis)
 - Reaction with OH
 - fixed OH field in the troposphere, based on monthly averages from 3D model output from Spivakovsky et al. (2000)
 - Can be adjusted in each box in the model
 - Temperatures specified in each tropospheric box, every month (NCEP/NCAR reanalysis (Kalnay et al, 1996)
 - Oceanic uptake (first-order loss timescale in the lowest box)

AGAGE 12-box-mode

- **T**_{ij} = Eddy diffusion timescales
- V_{ii} = Advection rates
- T_0 = parameterized oceanic/soil uptake

T_s = Instantaneous stratospheric lifetimes
OH = OH reaction rates based on seasonally
varying OH levels and temperatures

AGAGE 12-box-model

Paramet er	Box 1	Box J	Prior (days)) Optimized (days)				
			Winter	Spring	Summer	Fall	Winter	Spring	Summer	Fall	
Eddy diffusion (T_{ii}^{-1})	0	1	1 - 116	116	261	139	- 84	83	165	- 80	t.
	1	2	495	712	363	712	244	568	187	560	
	2	3	167	167	116	116	165	165	117	124	
	4	5	29	35	85	52	22	26	51	40	
	5	6	124	178	124	178	81	105	103	109	
	6	7	52	42	29	42	60	40	31	43	
	4	0	38	38	38	38	26	26	23	30	
	5	1	38	38	38	38	45	39	31	38	
	6	2	38	38	38	38	29	39	36	37	
	7	3	38	38	38	38	31	36	37	37	
	8	4	1260	1260	1260	1260	895	775	694	897	
	11.1.29	5	1260	-1260	1260	1260	1011	1123	= 1349	1198	
	10	6	1260	1260	1260	1260	1645	1722	1806	1668	
	11 (11)	7	1260	-1260	1260	1260	1306	1688	1674	1398	
	8	9	100	100	100	100	95	94	94	95	
	9	10	100	100	100	100	95	95	97	96	
	10	11	100	100	100	100	99	99	100	99	
Advection (V _{ij})	0	1	-1506-	581	1882	-142					ī
	1	2	-69	-376	50	126					
	2	3	1506	1075	753	1506					
	4	5	1506	-581	-1882	442					
	5	6	69	376	-50	-126					
	6	7	-1506	-1075	-753	-1506					
	4	0	-1506	581	1882	-442					
	5	1	-72	-228	52	98					
	6	2	65	279	-54	-137					
	7	3	-1506	-1075	-753	-1506					