Methane and its isotopologues simulated with a chemistry-climate model to evaluate the atmospheric burden and the uncertainty of emissions

Franziska Frank*, Patrick Jöckel*, Florian Arfeuille**, Dominik Brunner**

Knowledge for Tomorrow

* DLR, Oberpfaffenhofen ** EMPA, Zürich

The chemistry climate model EMAC

Our Motivation:

- Up to now: methane was simulated in EMAC with predefined boundary conditions
- We introduced a simplified methane chemistry with isotopologues to improve our knowledge of methane emissions

 \Rightarrow First step towards the interactive simulation of methane and its sources

The chemistry climate model EMAC

Our Motivation:

- Up to now: methane was simulated in EMAC with predefined boundary conditions
- We introduced a simplified methane chemistry with isotopologues to improve our knowledge of methane emissions

 \Rightarrow First step towards the interactive simulation of methane and its sources

Simplified methane chemistry with isotopologues

The submodel

- simulates the simplified methane chemistry
- uses predefined reaction partners and emission fields

Simplified methane chemistry:

The extension for isotopologues

simulates the isotopologues:

- CH₄ and CH₃D
- ¹²CH₄ and ¹³CH₄

Higher substituted isotopologues are neglected.

The submodel accounts for the kinetic isotope effect with an altered reaction rate:

e.g. $k_{13}_{CH_4} = KIE^{-1} \cdot k_{12}_{CH_4}$ KIE values in the simulation were taken from [Röckmann 2011]

Simplified methane chemistry with isotopologues

The submodel

- simulates the simplified methane chemistry
- uses predefined reaction partners and emission fields

Simplified methane chemistry:

with [CH4], [OH]: concentrations, k_{OH} : reaction rate, and *emis*: methane emissions.

The extension for isotopologues

simulates the isotopologues:

- CH₄ and CH₃D
- ¹²CH₄ and ¹³CH₄

Higher substituted isotopologues are neglected.

The submodel accounts for the **kinetic isotope effect** with an altered reaction rate:

e.g. $k_{13}_{CH_4} = KIE^{-1} \cdot k_{12}_{CH_4}$ KIE values in the simulation were taken from [Röckmann 2011]

www.DLR.de
Slide 3/16
Methane and its isotopologues
Franziska Frank
23.09.2015

Simulation Set-up

Parameter of model

- Grid: approx. 3° \times 3° on 90 levels up to 0.01 hPa
- Newton relaxation with ERA-Interim data
- Initialization with a spin-up of 10 years

Evaluation approach

- Evaluated time period: Jan 1990 Dec 1999
- Climatology of the evaluation time period, zonally averaged as indicated
- First results detailed statistical analysis is still in progress

www.DLR.de
Slide 3/16
Methane and its isotopologues
Franziska Frank
23.09.2015

Simulation Set-up

Parameter of model

- Grid: approx. 3° \times 3° on 90 levels up to 0.01 hPa
- Newton relaxation with ERA-Interim data
- Initialization with a spin-up of 10 years

Evaluation approach

- Evaluated time period: Jan 1990 Dec 1999
- Climatology of the evaluation time period, zonally averaged as indicated
- First results detailed statistical analysis is still in progress

www.DLR.de
Slide 4/16
Methane and its isotopologues
Franziska Frank
23.09.2015

Evaluation with airborne measurements

Used data:

Airborne flask measurements of CH₄, δ^{13} C(CH₄) and δ D(CH₄) by mass spectrometry during the CONTRAIL* project. Period: 2006 - 2010.

* Reference: [Umezawa et al. 2012]

Flight routes

- Separating data in two regions: region 1 (green) and region 2 (red)
- Averaging simulation results over indicating region
- Excluding outliers in region 2 due special meterological conditions as stated in [Umezawa 2012]

Remark

Methane concentration is circa 160 ppb lower \Rightarrow Simulation covers time period of about 10 years before measurements. Methane increased about 5 - 15 ppb yr⁻¹ between 1990 - 2000.

sotopic ratios of methane sources (in ‰)				
Emission-class	$\delta^{13}C(CH_4)$	range	$\delta D(CH_4)$	range
biomass burning	-23.9	2	-213.0	3 - 12
anthropogenic	-49.9		-215.1	0 - 2
ocean	-59.0	1	-220.0	20 - 30
wetlands	-59.4	1.5	-336.2	
termites	-63.3	6	-390.0	_
wildanimals	-61.5	0.5	-319.0	
rice	-63.0	0 - 2	-324.3	5
volcanoes	-40.9	0.9	-253.4	50

Isotopic ratios were calculated by combining estimates from seven references. [Kiyosu 1982] [Quay 1999] [Snover 2000] [Fletcher 2004] [Whiticar 2007] [Monteil 2011] & [Rigby 2012]

Uncertainties in

- the δ signature of sources
- the relative contribution of different sources
- the kinetic isotope effect

sotopic ratios of methane sources (in ‰)				
Emission-class	$\delta^{13}C(CH_4)$	range	$\delta D(CH_4)$	range
biomass burning anthropogenic ocean wetlands termites wildanimals rice	-23.9 -49.9 -59.0 -59.4 -63.3 -61.5 -63.0	2 - 1.5 6 0.5 0 - 2	-213.0 -215.1 -220.0 -336.2 -390.0 -319.0 -324.3	3 - 12 0 - 2 - 20 - 30 - - 5
volcanoes	-40.9	0.9	-253.4	50

Isotopic ratios were calculated by combining estimates from seven references. [Kiyosu 1982] [Quay 1999] [Snover 2000] [Fletcher 2004] [Whiticar 2007] [Monteil 2011] & [Rigby 2012]

Uncertainties in

- the δ signature of sources
- the relative contribution of different sources

the kinetic isotope effect

sotopic ratios of methane sources (in ‰)				
Emission-class	δ^{13} C(CH ₄)	range	$\delta D(CH_4)$	range
biomass burning anthropogenic ocean wetlands termites wildanimals rice volcanoes	-23.9 -49.9 -59.0 -59.4 -63.3 -61.5 -63.0 -40.9	2 - 1 1.5 6 0.5 0 - 2 0.9	-213.0 -215.1 -220.0 -336.2 -390.0 -319.0 -324.3 -253.4	3 - 12 0 - 2 - 20 - 30 - 5 50

Isotopic ratios were calculated by combining estimates from seven references. [Kiyosu 1982] [Quay 1999] [Snover 2000] [Fletcher 2004] [Whiticar 2007] [Monteil 2011] & [Rigby 2012]

Uncertainties in

- the δ signature of sources
- the relative contribution of different sources
- the kinetic isotope effect

DIR

DIR

www.DLR.de ● Slide 10/16 ▷ Methane and its isotopologues ▷ Franziska Frank ● 23.09.2015

Evaluation with balloon borne measurements

Used data:

Balloon borne measurements of CH₄, $\delta^{13}C(CH_4)$ and $\delta D(CH_4)$ * Period: 1987 - 2003

Launchsites

Kiruna (Sweden, KIR), Aire sur l'Adour (France, ASA), Gap (France, GAP) and Hyderabad (India, HYD).

* Reference: [Röckmann et al. 2011]

Regions of balloon launches

Evaluation approach

Simulation data was averaged over corresponding latitudinal band and compared to the measurements.

www.DLR.de ● Slide 12/16 ▷ Methane and its isotopologues ▷ Franziska Frank ● 23.09.2015

Evaluation of the vertical profile of CH₄

www.DLR.de ● Slide 13/16 ▷ Methane and its isotopologues ▷ Franziska Frank ● 23.09.2015

Evaluation of the vertical profile of $\delta^{13}C(CH_4)$

Remark

Results corrected by +2.6‰. \Rightarrow Emissions are presumably isotopically too light concerning ¹³CH₄ www.DLR.de ● Slide 14/16 ▷ Methane and its isotopologues ▷ Franziska Frank ● 23.09.2015

Evaluation of the vertical profile of $\delta D(CH_4)$

Remark

Results corrected by -15%. \Rightarrow Emissions are presumably isotopically too heavy concerning CH₃D

Summary & Outlook

Summary

- Simulation results are affected by the uncertainties of:
 - the estimated methane sources
 - the isotopic ratio of distinct sources
 - the kinetic isotope effect
- The simulation reproduces the observed **latitudinal gradient** of methane and its isotopologues.
- Observed vertical profiles of methane and its isotopologues are well reproduced by the simulation.

Outlook

- Optimizations of methane emissions and its isotopic ratios by inversion
- Further evaluations of seasonal/annual changes in $\delta^{13}C(CH_4)$ and $\delta D(CH_4)$
- On the long view: Further simulations with the full chemistry and interactive methane emissions instead of prescribed boundary layer.

Thank you for your attention!

[Emma Green, "The Case for Shale Gas in 5 Charts", The Atlantic, 2013]

www.DLR.de ● Slide 16/16 ▷ Methane and its isotopologues ▷ Franziska Frank ● 23.09.2015

References

Miller, J. B., Mack, K. A., Dissly, R., White, J. W. C., Dlugokencky, E. J. and Tans, P. P. 2002. Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA/CMDL global air sampling network. J. Geophys. Res. 107, doi: 10.1029/2001JD000630.

Project CONTRAIL: CONTRAIL website: http://www.cger.nies.go.jp/contrail/

- Umezawa, T., T. Machida, K. Ishijima, H. Matsueda, Y. Sawa, P. K. Patra, S. Aoki and T. Nakazawa (2012) Carbon and hydrogen isotopic ratios of atmospheric methane in the upper troposphere over the western Pacific, Atmospheric Chemistry and Physics, 12, 80958113, doi:10.5194/acp-8095-2012
- Bickmann, T., Brass, M., Borchers, R., and Engel, A.: The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements, Atmos. Chem. Phys., 11, 13287-13304, doi:10.5194/acp-11-13287-2011, 2011.

www.DLR.de ● Slide 16/16 ▷ Methane and its isotopologues ▷ Franziska Frank ● 23.09.2015

Used values of the kinetic isotope effect:

Reaction partner	for ¹³	CH4	for CH ₃ D	
	A	В	A	В
ОН	1.0039	0.000	1.097	49.00
O(1D)	1.0130	0.000	1.066	0.00
CI	1.0430	6.455	1.278	51.31

values taken from [Röckmann 2011]

with $KIE(T) = A \cdot \exp(B/T)$; T := temperature

www.DLR.de
Slide 16/16
Methane and its isotopologues
Franziska Frank
23.09.2015

1. Evaluation: Ground-based measurements

Used data:

Stationary flask measurements of CH₄ and $\delta^{13}C(CH_4)$ by mass spectrometry of NOAA/ESRL* Period: 2000 - 2007.

At the Stations:

Alert, Ascension Island, Barrow, Cape Grim, Cape Kumukahi, Mace Head, Mauna Loa, Mt. Waliguan, Niwot Ridge, South Pole, Tae-ahn Peninsula, Tutuila (Cape Matatula)

* Reference: [Miller et al. 2002]

1. Evaluation: Ground-based measurements

- methane concentration about 100 ppb lower ⇒ simulation covers time period 10 years before measurements
- d¹³C is about 3 ‰ lower ⇒ Possible reasons: Shift in relative contribution of different sources or uncertain isotopic ratios of methane emissions.

end of the second secon

ground level d13C - climatology 1990 - 1999

NOAA/ESRL did not include dD in the measurements.

Vertical profile of measurements

- Polar: KIR Kiruna bluish line
- Mid-latitude: ASA Aire sur l'Adour & GAP - Gap - reddish line
- Tropics: HYD Hyderabad greenish line

Dashed lines represent the average across all launches in the same region.

Evaluation of the vertical profiles

- δ-values corrected to account for shifted isotopic ratios of sources.
- Simulation results lay within standard deviation of measurements.
- The results sufficiently reproduce the latitudinal and vertical gradient.

