Understanding COS fluxes in a boreal forest: towards COS-based GPP estimates.

Linda M.J. Kooijmans¹, Kadmiel Maseyk², Timo Vesala³, Huilin Chen¹,⁴, Ivan Mammarella³, Ulli Seibt⁵, Mari Pihlatie³, Wu Sun⁵, Helmi Keskineh³, Arnaud P. Praplan³, Alessandro Franchin³, Janne Levula³

1) Centre for Isotope Research, University of Groningen, Groningen, The Netherlands,
2) Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, United Kingdom.
3) Department of Physics, University of Helsinki, Helsinki, Finland.
4) Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
5) Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA.
Carbonyl sulfide (COS) as tracer for photosynthetic Carbon uptake

\[F_{\text{COS}} = \frac{GPP}{[\text{CO}_2]} \frac{[\text{COS}]}{V_{\text{COS/CO}_2}} \]

\[\text{NEE} = \text{GPP} - \text{Re} \]

NEE = Net Ecosystem Exchange
GPP = Gross Primary Production
Re = Respiration
Carbonyl sulfide (COS) as tracer for photosynthetic Carbon uptake

\[F_{COS} = \frac{GPP \left[\frac{COS}{CO_2} \right]}{V_{COS/CO_2}} \]

Environmental drivers of COS fluxes?

\[\text{NEE} = \text{GPP} - \text{Re} \]

CO\(_2\)

COS

Soil?

NEE = Net Ecosystem Exchange
GPP = Gross Primary Production
Re = Respiration
InGOS measurement campaign: Hyytiälä, Finland
Measurement setup

COS and CO$_2$ measurements:
• Eddy-covariance (23 m)
• Profile: 0.5, 4, 14, 23, 125 m
• Soil chamber fluxes

• Meteorological variables, Soil temp. and humidity, 222Radon, etc.
Aerodyne QCLS for COS, CO$_2$, CO and H$_2$O measurements

Precision (2 minute meas.): between 3.4 – 4.1 ppt COS, 0.03 – 0.04 ppm CO$_2$.

Reproducibility: 2.1 ppt COS, 0.1 ppm CO$_2$.

10 Hz: Eddy-cov.

1 Hz: Profile + soil chamber
Ecosystem COS and CO$_2$ flux at 23 m
Ecosystem COS and CO$_2$ flux at 23 m
Profile measurements

- CO₂ [ppm]
 - 370
 - 390
 - 410
 - 430

- COS [ppt]
 - 250
 - 350
 - 450

- Height [m]
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
 - 60
 - 70
 - 80
 - 90
 - 100
 - 110
 - 120

- Tree:
 - 19 m
 - 23 m
 - 14 m
 - 4 m
 - 0.5 m

- Measurements:
 - 125 m
 - 12 jul 10:00
Flux-gradient method

27-19 m CO₂ flux

\[F_{CO_2} = -K \frac{\Delta C_{CO_2}}{\Delta Z} \rho \]

\[K = \frac{u_* k (z - d)}{\varphi_m} \]
Flux-gradient method

27-19 m COS flux

\[F_{\cos} = -K \frac{\Delta C_{\cos}}{\Delta Z} \rho \]

\[K = \frac{u_* k (z - d)}{\varphi_m} \]
Radon-tracer method

\[F_{COS} = F_{Rn} \frac{\Delta C_{COS}}{\Delta C_{Rn}} \]

\[F_{Rn} = 2.8 \text{ mBq m}^{-2} \text{ s}^{-1} \]

Manohar et al., 2013
Radon-tracer method

\[F_{COS} = F_{Rn} \frac{\Delta C_{COS}}{\Delta C_{Rn}}, \quad F_{Rn} = 2.8 \text{ mBq m}^{-2} \text{ s}^{-1} \]

- COS / CO\textsubscript{2} concentration
- Radon concentration
- COS / CO\textsubscript{2} vs radon correlation
- COS / CO\textsubscript{2} eddy covariance flux
Radon-tracer method

\[F_{COS} = F_{Rn} \frac{\Delta C_{COS}}{\Delta C_{Rn}}, \quad F_{Rn} = 2.8 \text{ mBq m}^{-2} \text{ s}^{-1} \]

Radon flux vs EC flux
Conclusion

- Ongoing field campaign on COS fluxes in Finland.
- Radon-tracer method for nighttime COS and CO$_2$ fluxes is promising.
- Flux-gradient method for COS fluxes requires further investigation.

Next...
- Compare different flux measurement techniques (Radon tracer method, flux-profile, soil, eddy covariance).
- Derive COS-based GPP estimates for the Hyytiälä site.