Field measurements of photo- and thermal degradation in an arid ecosystem

JRA1: WP13.2

The in-situ FTIR-analyzer for biosphere-atmosphere exchange measurements

Hella van Asperen, Thorsten Warneke, Simone Sabbatini, Giacomo Nicolini, Dario Papale, Justus Notholt

23 September 2015

Outline

- Introduction
- Set up of field experiment
- Results of field experiment
- Laboratory experiment
- Discussion & Conclusion

Introduction - Materials & Methods

Introduction

- Decomposition in arid ecosystems is relatively unknown
 - Underestimation of decompostion (temperature, moisture)

- Abiotic decomposition can be relevant in arid ecosystems
 - Photodegradation
 - Thermal degradation

Introduction

- Photodegradation → breakdown by sunlight (CO₂, CH₄, CO)
 - Produced by UV as by visible light;
 - Reported for different litter types;
 - Biochemical mechanisms still unknown
 - Also literature to be found not existing or not significant

- Thermal degradation→ breakdown by temperature (CO₂, CH₄,
 CO)
 - Less studied, role unknown

Introduction

- Mostly laboratory studies
- Measurement of abiotic decomposition is challenging:
 - Radiation:
 - inhibits microbial decomposition, microbial facilitation by fragmentation

Temperature: effect on biological processes

 Field study: estimated up to be 20% of total CO₂ production in arid ecosystem

Aim of field measurements:

To quantify the role of photo and thermal degradation on (arid) ecosystem scale

Introduction - Materials & Methods

Introduction - Materials & Methods

Results

Laboratory experiment

Discussion & Conclusion

Results: Flux chamber CO₂-fluxes

No photosynthesis

Results: Flux chamber CO-fluxes

- No biological CO-emission!
- Biological CO-uptake

Results

No photodegradation?

Samples:

- 2 gram fieldsite grass
- Air dried (35 °C)
- 3 treatments
 - No radiation
 - **UV-A** radiation
 - **UV-B-radiation**

No photodegradaton-fluxes observed for CO₂ and CO

Thermal degradation?

Samples:

- 2 gram fieldsite grass & soil
- Air dried (35 °C)
- 20-65 °C

Temperature controlled waterbath

CO-fluxes in field:

Result of biological uptake and thermal CO production?

Flux gradient CO fluxes

Introduction - Materials & Methods

Results

Laboratory experiment

Discussion & Conclusion

Discussion & Conclusion

No photodegradation observed (on ecosystem scale) in contrast to other studies

- Small fluxes (in comparison to biological) on ecosystem scale
- Different fieldsite and litter
- Thermal degradation (partly) misinterpreted as photodegradation

Discussion & Conclusion

Thermal degradation for $CO_2 \rightarrow Observed$ in laboratory

Observed from high temperatures (>55°C)

Thermal degradation for CO→Observed in field and laboratory

- Observed at lower temperatures (20°C)
- Sum of biological uptake and abiotic degradation

Published in Biogeosciences

van Asperen, H., Warneke, T., Sabbatini, S., Nicolini, G., Papale, D., and Notholt, J.: The role of photo- and thermal degradation for CO_2 and CO fluxes in an arid ecosystem, Biogeosciences, 12, 4161-4174, doi:10.5194/bg-12-4161-2015, 2015.

Thank you

- InGOS; support of field experiment
- TTOrch; support of exchange stay at DIBAF, Italy
- University of Tuscia; all the help in the field
- Thank you all for your attention

Results: chamber fluxes over measurement period

Results: chamber fluxes over measurement period

In field: 300-2800nm

UVA: 315-400nm

UVB: 280:315nm

Lab: UVA)(375):45 W nm

