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Outline

Global picture

Arctic Council initiated Arctic methane
assessment under the auspices of the AMAP
SLCF initiative

Monitoring methane emission variability in
space and time combined with experimental
field work

Permafrost sensitivity and impacts on
ecosystem productivity
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For AMAP technical report

A medium (25 Tg CH,/yr)
Alarge (50 Tg CH,/yr)
An extreme (100 Tg CH,/yr)

- scenario for natural emission change by 2050 was used.

This assessed in relation to global-mean concentrations until 2050
assuming different scenarios for anthropogenic emissions. Future
concentrations are calculated by a Box model, using the CLE (left
panel) or MFR-ACS8 (right panel) scenarios for anthropogenic
emissions, and the different (linear) increases above in natural
emissions, in addition to the baseline natural emissions of 202
Tg(CH,)/yr.



Natural emission change impact

Extra global warming < 0.1 °C

Gauss, Avorek, and the AMAP CH, expert team, in press.






Hope and Schaefer, 2015



Basic message

Natural Arctic methane emission change is still marginal in importance
for climate over the coming 50-100 years compared with anthropogenic
emissions

We have no evidence to say we are looking towards an “apocalypse”
based on natural emission changes..

Anthropogenic emissions rule the changing climate and these
emissions are far more powerful than any of the natural ecosystem
processes.

But this does not mean we do not have some important unknowns
and interesting basic science issues to address in the natural
arctic environments



Basic science

Explain natural variability in space and time
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Summarising Arctic carbon fluxes

Parmentier et al. Nature Climate Change 2013



Sea Ice Connections to Methane

Parmentier et al., Nature Climate Change, 2013



Sea ice correlation with terrestrial methane emissions

Parmentier et al., GRL, 2015



Greenland Ecosystem Monitoring

“The overall purpose 1s to collect long-term data
quantifying seasonal and interannual variations and
long-term changes 1n the biological and geophysical

properties of the terrestrial, freshwater and marine
ecosystem compartments 1n relation to local,
regional and global climate variability and change”




Monitoring and research platforms, year of

start, all ongoing Zackenberg
Terrestrial - 1996
Marine - 2002 (1994)

Sermilik

Qeqgertarsuaq

Nuuk
Terrestrial - 2007
Marine - 2005










Mastepanov, Christensen et al., 2013. Biogeosciences



Mastepanov, Christensen et al., 2013. Biogeosciences



Mastepanov, Christensen et al., 2013. Biogeosciénces






Mastepanov, Christensen et al., 2013. Biogeosciences



Experimental setup

Experiment - summer 2010

High arctic habitat in northeast Greenland — Zackenberg (74°30°N 20°30W)
Muskox Ovibos moschatus
Mire/grassland - main grazing area during summer and autumn

Five blocks; each with one control and two treatments: Exclosure and Snow-
control

Measurements in the growing season of 2011, 2012 and 2013

— CO, & CH, fluxes - closed chamber technique — portable FTIR (Fourier Transform
Infrared) Spectrometer (Gasmet Dx 40-30, Gasmet Technologies Oy)

— Ecosystem variables: soil temperature, active layer depth, water table depth
— Vegetation analysis in 2011 and 2013
— Harvested biomass samples in August 2013

Photo: Lars Holst Hansen



Three years after initiation of the exclosures vegetation

structure had changed

Fig: g + SE of samples harvested
(20*20 cm) in 2013. Sign. differences,
*p<0.05
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The height of Dupontia fisheri ssp.
Psilosantha, Eriophorum scheuchzeri and
mean height of all vascular leaves were
significantly higher in ungrazed areas
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Falk et al., ERL 2015



Three years after initiation of the exclosures vegetation
structure had changed
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Three years after initiation of the exclosures
CO, fluxes had changed
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hree years after initiation of the exclosures
CH, fluxes had changed
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Basic science
Sensitivity of the permafrost ecosystems
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Mininum temperature varies greatly
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Winter (Nov-Apr) temperatures at 15 cm
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Median daily fAPAR for early, peak and late season from 2010 to 2013. Filled circles indicate median
values for control plots, empty circles indicate treatment plots. Bars show the median absolute

deviation (MAD)

Bosio et al. 2014
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from 2010 to 2013. Bars show the standard deviation

Bosio et al. 2014






Conclusions

Natural methane emissions and their dynamics both in the terrestrial
and near-coastal Arctic domain remain poorly understood. But the
climate impact of a wide range of possible changes in the emissions
have been quantified and shown as of marginal importance compared
with anthropogenic carbon dioxide emissions.

The carbon cycling in terrestrial ecosystems will according to most
models develop to be a stronger (but still minor) sink for atmospheric
CO, over the coming decades. This disregards the possible extra
releases from thawing organic material.

The balance of evidence shows that in the global picture the Arctic will
carry a small amplifying warming effect caused by increasing methane
emissions, but also an opposite increasing carbon dioxide sink strength
and most |mportantly a significant change in radiative energy exchange
related with changes relating to changes in sea ice, snow and
vegetation cover.
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