

Methane emissions from a UK landfill site -Emission ratios and flux estimation

<u>Hannah Sonderfeld</u>, Neil Humpage, Antoine Jeanjean, Roland Leigh, Grant Allen^{*} and Hartmut Boesch

www.le.ac.uk

Centre for Atmospheric Science, The University of Manchester, United Kingdom

Emission Inventories

GAUGE – **G**reenhouse g**A**s **U**K and **G**lobal Emissions: Quantifying the UK GHG budget, improving emission inventories and supporting emission reduction measures - *NERC funded UK project*

- Waste management sector contributes to 4 % of total GHG emissions in the UK
- Largest source for CH₄ emissions (44 %)
- Landfills not enlisted as point sources for CH₄ in NAEI 2012 (NAEI – UK National Atmospheric Emission Inventory)
- CO₂ emissions not reported from operational sites

Methane production at landfill sites

- Active/open site: Aerobic and anaerobic degradation
 → CH₄ and CO₂ emissions
- CO₂ produced in initial stages of waste decomposition
- Under anaerobic conditions: $CH_3COOH \rightarrow CH_4 + CO_2$ $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ $\rightarrow 50 \% CH_4$ and 45 % CO_2
- Cover soils support CH₄ oxidation
- Installation of methane recovery systems for flaring or energy production

Measurements at landfill site

- GAUGE Hotspots Campaign at landfill site near Ipswich from 4th to 15th August 2014
- Deployment of a **Spectronus in-situ FTIR** by Ecotech
- In-situ measurements of CO₂, CH₄, N₂O, CO
- Continuous measurements day & night
- Time resolution of 3 min
- Calibrated with 2 primary standards, 1 drift gas
- Coincident measurements of CO₂ and CH₄ with LGR (Los Gatos Research – Ultraportable Greenhouse Gas Analyzer)

Overview landfill site

• Area of emitting site: 17823 m²

Time series of GHG

Comparison FTIR and LGR

- Side by side measurements on 3 different days
- Time resolution: LGR 1 s, FTIR 3 min

y = (1.000 ± 0.003)·x – (2 ± 1) ppm

 \leq 10 ppm: y = (0.992 ± 0.009) ·x – (0.01 ± 0.03) ppm

> 10 ppm: y = (2.5 ± 0.2) ·x – (15 ± 2) ppm

340 350 360° 010

270°

Emission ratio CH_4/CO_2

Data divided into 12 windsector (30 degrees)

Emission ratio CH_4/CO_2

- Data divided into day and night time
 - Day: 9 am to 6 pm
 - Night: 9 pm to 6 am
- Comparable emission ratios
- Mean emission ratio of 0.23 ± 0.04
 - Typical value for anaerobic conditions is 1.2 (Lohila et al. 2007)

Wd: ~ 170 degree

Date		CH ₄ /CO ₂	R ²
09/08	Day	0.26 ± 0.02	0.520
11/08	Day	0.25 ± 0.01	0.648
12/08	Day	0.17 ± 0.01	0.516
11-12/08	Night	0.233 ± 0.007	0.666
09-10/08	Night	0.31 ± 0.01	0.918

Flux estimation – CFD model

• CFD model: distribution of emissions (CFD: Computational Fluid Dynamics)

⁽Provided by Antoine Jeanjean)

- 150 200 250 300 350 d direction (deg)
- Higher concentrations for lower wind speeds
- Model uncertainty < 40 %

 Estimation of emission flux from active site

Flux estimation – CH₄

- FTIR data binned in intervals of 10 degrees in wd and 2 m/s in ws
- At least 5 data per bin
- Same analysis with CO₂

Flux estimation - Background

- 2 Background sites
 - LGR opposite active site
 - GC off-site to the south
- LGR: CO₂ and CH₄
 only on 11 and 12/08 at day
- GC: only CH₄, continuously
- Offset between LGR and FTIR added to CO₂ background

(GC-data from Stuart Riddick)

Flux estimation - Results

- Mean calculated from at least 5 data per bin.
- Wind directions of 220 deg or higher not taken into account

Fluxes	CH ₄ (mg/m²*s)		CO ₂ (mg/m²*s)	
	av	stdev	av	stdev
Day 09/08	1.1	0.2	19.8	1.0
Day 11/08	1.1	0.3	19.7	2.3
Day 12/08	0.9	0.2	18.9	2.7
Night 11 – 12/08	2.0	0.4	-	-

- Mean CH₄ emissions of 871 t/a
- High CO₂ flux compared to capped landfill areas

Summary

- 6 days of in-situ FTIR data from GAUGE Hotspots campaign
- Good agreement with LGR
 - Offset in CO₂ of 2 ppm
 - For CH₄ only below 10 ppm
- Emission ratios:
 - From active site $CH_4/CO_2 = 0.23 \pm 0.04$
 - From ~170 deg $CH_4/CO_2 = 0.31 \pm 0.01$
 - Reflects gas production under aerobic conditions
- Flux estimation:
 - CO₂ / Day = 19.5 ± 2.1 mg/(m²·s) → 10960 t_{CO2}/a
 - − CH_4 / Day = 1.1 ± 0.3 mg/(m²·s) → 618 t_{CH4}/a
 - − CH_4 / Night = 2.0 ± 0.4 mg/(m²·s) → 1124 t_{CH4}/a
 - Off-site flux estimations in similar range
- Additional hotspots of CH₄ and CO₂ emissions
 - Assignment difficult, because of complex and heterogeneous terrain

www.le.ac.uk

Emission ratio CH_4/CO_2

Mean diurnal cycle

Boundary layer height data from ECMWF

www.le.ac.uk

Flux estimation – CO₂

Emission ratios N₂O

Application of CFD results to FTIR data

The emission flux F that is going to be calculated is of the kind:

$$[F] = \frac{kg}{m^2 * s}$$

Where [] denote that the units are displayed.

A source flux *f_{source}* is assumed of 1 g/s to run the CFD model. Hence the Flux is:

$$F = \frac{f_{source}}{A}$$

With A being the area of the emissions, which is in this case A = 17823 m². The model outputs are given as a mass concentration (C_{source}) in $\frac{g}{m^3}$. This concentration is converted to mole fraction in ppm:

$$\chi_{Source,i} = \frac{C_{Source}}{C_{Air} * M_i} * 10^6 \, ppm$$

With $C_{Air} = 40.34 \frac{mol}{m^3}$ being the molar concentration of air and M_i is the molar mass of methane ($M_{CH_4} = 16.04 \ g/mol$) and carbon dioxide ($M_{CO_2} = 44.01 \ g/mol$), respectively.

A dilution factor DF is then calculated by comparing the measured mole fraction from the FTIR with the diluted model concentration:

$$DF_i = \frac{\chi_{FTIR,i}}{\chi_{source,i}}$$

Finally the emission flux for the active site of the landfill can be separately calculated for each GHG in g/(m²*s) as:

$$F_i = \frac{f_{source}}{A} * DF_i$$

- Testing of instrument in the lab
 - Long term stability/repeatability:

 Calibration to improve accuracy: 2 primary standards and 1 secondary as drift gas

Drift gas measurements

- Measurements of at least 12 min after sample exchange
- Drift gas cylinder calibrated on 14/08/2014 with primary standards

