

Bottom-up and top-down approaches at the landscape scale over a mixed landscape

Emeline Lequy^{*}, Andreas Ibrom, Per Ambus, Raia-Silvia Massad, Stiig Markager, Eero Asmala, Josette Garnier, Benoit Gabrielle, and <u>Benjamin Loubet</u>

INGOS – final conference. Utrecht 22-24 September 2015

Context

- ~80% of anthropogenic N_2O emitted by agriculture
- Main emissions from fertilised agricultural fields.
- Indirect emissions from NO₃⁻ leaching to freshwater bodies & estuaries
 - \rightarrow 26-37% of direct emissions (Reay et al., 2012)
- Great spatial and temporal variability in these emissions
- Measurements difficult and scale dependent
- Uncertainties on emissions
- How will N₂O emission respond to climate change?

Context

Need for integrated measurements at the landscape scale

Objectives

- Compare the results of the bottom-up and top-down approaches both for the agricultural and the fjord areas
- Evaluate the effect of the scale on bottom-up emissions
- Estimate the distribution between direct N₂O emissions and indirect emissions

Study site:

- Tall tower at the DTU Risø Campus (sensor at 96 m high)
- Footprint : 5 km around the tall tower (80 km²)
- large agriculture area (crops: 18 km²)
- inner Roskilde fjord (36 km²)
- urban area (Roskilde) waste water treatment
- woody areas

Material and methods

*****Bottom-up emissions from crops and grassland

- Distribution of crop fields and grasslands in the study site
- CERES-EGC and Pasim crop fields and grasslands models

Material and methods

Bottom-up emissions from the Roskilde Fjord

- Mildly salty (10-15), shallow (3m). and recovering from eutrophication
- Measurements of N₂O concentrations in 15 points in May, July and September

 $F_{N2O} = k_w * ([N_2O]_w - C_e)$

- K_w (m s⁻¹): gas transfer coefficient, f(u,10m)
- C_e (g N₂O-N L⁻¹): equilibrium N₂O concentration in seawater, f(T, salinity, [N₂O]_{atm})

Bange et al. (2001), Weiss and Price (1980)

Material and methods

Top-down measurements with eddy covariance

- Tall tower with anemometer and inlet tube at 96 m
- N₂O Los Gatos analyser for eddy covariance
- Short lag time insured by large pump (lbrom et al. *in prep*)

Top-down and bottom-up flux estimations

- Selection of rasters where bottom-up emissions are computed
- Rasters outside the modelling domain are considered emitting an average flux
- Source attribution calculated with the Kormann and Meixner (2001) footprint model
- Comparison of daily averages

Results – modelled terrestrial emissions

*****Bottom-up CERES and PASIM emissions

- Annual fluxes : from 1 to 10 kg N₂O-N ha⁻¹ year⁻¹
- → Fertilizers inputs : 0 to 300 kg N ha⁻¹ yr-¹
- Temporal variations between CERES and PASIM
- \rightarrow Dates of fertilization, harvest, cuttings

	Crop Fields
Area (km²)	18
N-Fertilisers (tons)	135
2013 N ₂ O emissions (kg N ₂ O-N yr ⁻¹)	1100 (IPCC) 690 (CERES-EGC)
Emission factors N ₂ O/N-fertiliser	IPCC : 1% Sjælland: 0.8% CERES-EGC: 0.6%
NO ₃ -N leaching	18 tons

Annual budget (kg N₂O-N ha⁻¹)

Results – Estimated Fjord emissions

Bottom-up N₂O fluxes from water sampling

- Low concentrations (< 0.24 μg N₂O-N L⁻¹)
- Estimated fluxes can be positive or negative
- Fluxes in July are lesser than those in May and Septembre
- Highest N₂O fluxes comparable to lower agricultural emissions

May concentrations

.09

Results – Top-down emissions

Eddy covariance N₂O fluxes in Fjord and Agricultural area

- Source attribution: agriculture 3% of time Fjord: 7% of time
- Partition between agriculture and Fjord emissions : 77% to 23%
- Per m², the fjord emitted \sim 3-time less N₂O than the agricultural area

3% of time

Comparison top-down and bottom up

Comparison top-down and bottom up

✤ Fjord: daily comparison

- Less data, but consistent
- Sign and order of magnitude in good agreement

Summary

- ✓ Bottom-up N_2 O emissions
 - ✓ Agricultural emissions lower than IPCC by 40% (~0.6 emission factor)
 - ✓ Fjord emissions temporally variable (factor of 10 changes)
 - ✓ Deposition flux observed in the Fjord
 - ✓ Higher Fjord emissions similar to lower Agricultural emissions
- ✓ Top-Down N_2O emissions with Eddy covariance at 96 m height
 - ✓ Demonstrated as a method for regional N_2O flux (Andreas Ibrom)
 - ✓ Emissions from Agriculture 3 times larger than from the Fjord
- \checkmark Comparison between top-down and bottom up
 - ✓ Footprint approach useful. No clear conclusions from scale evaluations
 - ✓ Comparable seasonality and order of magnitude between methods
 - ✓ Peaks not well reproduced (timing and soil characteristics?)

Limitations and perspectives

- ✓ Limitations
 - Time x Spatial correlation of tower data
 - Limited representativeness (3%-7% time in median)
 - How to evaluate the potential bias (link the with bottom-up ?)
 - Crop models not linked to hydrological models (no horizontal transfer)
 - N₂O flux measurements still required at local scale for emissions models
- ✓ Perspectives
 - Link eddy covariance with calibrated N₂O emissions models?
 - Test this methods at the landscape scale for other tall (or smaller) towers in Europe.
 - Use landscape models to better constraint water and soil nitrogen (Landscape-DNDC or integrative NitroScape)

Thanks for your attention

Crop modelling with CERES

Overview of the agricultural area

- Distribution of the crop and soil types
 - Main rotation: rapeseed / wheat / barley (data from NaturErhvervstyrelsen)
 - Soils from very sandy to loamy sand (data from Danish soil database)
 - Maximal authorized fertilization for each crop/soil: 100-170 kgN ha⁻¹ yr⁻¹
 (223 tons N over the study site)

Crop modelling with CERES Results in 2014

✤ N₂O emissions: 0.93±0.86 kg N₂O-N ha⁻¹ yr⁻¹

- Distribution of the N₂O emissions
 - Factor 30 between the crop fields
 - Average ratio N₂O/fertilisation: 0.8
 - Soil type n°5 emits more than the others
 - \rightarrow data check
- Comparison with IPCC calculations

 → 0.98 kg N₂O-N ha⁻¹ yr⁻¹
 (Emission Factor for Sjælland: 0.8 (Chirinda et al. 2010))
 → Good agreement between IPCC calculations and CERES-EGC modelling

Crop modelling and tower measurements Results in 2014

- Extraction of values from the EC and CERES datasets
 - From July to September 2014
- ✤ EC dataset
 - Points between 500-5000m from the tall tower
 - Eastern points
 - Daily mean
- ♦ CERES dataset
 - Daily mean of all the crop fields

