Ground based remote sensing of greenhouse gases – recent developments and their use for model- and satellite validation

T. Warneke¹, T. Blumenstock², H. Bösch³, B. Dils⁴, F. Hase², R. Kivi⁴, M. De Maziere⁴, J.Notholt¹, R. Sussmann⁵, A. Ostler⁵, Z. Wang¹

¹ Institute of Environmental Physics, University of Bremen, Germany
 ² Karlsruhe Institute of Technology, Karlsruhe, Germany

- ³ University of Leicester, UK
- ⁴ Belgian Institute for Space Aeronomy, Brussels, Belgium
- ⁵ Karlsruhe Institute of Technology Garmisch, Germany

Atmospheric greenhouse gas observations

Ground based solar absorption FTIR-spectroscopy

Solar absorption FTIR-spectrometry

- is the only ground-based remote sensing technique that has demonstrated the required precision
- measure the same quantity as the satellites but do so at a fixed point making it amenable to direct comparison with aircraft
- → Calibrate satellite retrievals against the existing in situ measurements
- shows a very good instrumental comparability
- → Global network of FTIR spectrometers (TCCON) is able to detect a spatial bias and/or temporal drift in the satellite data

Ground based solar absorption FTIR-spectroscopy

Solar absorption FTIR-spectrometry

- is the only ground-based remote sensing technique that has demonstrated the required precision
- measure the same quantity as the satellites but do so at a fixed point making it amenable to direct comparison with aircraft
- → Calibrate satellite retrievals against the existing in situ measurements
- shows a very good instrumental comparability
- → Global network of FTIR spectrometers (TCCON) is able to detect a spatial bias and/or temporal drift in the satellite data

TCCON data product

Near-IR spectral region

- Less interferences than in the mid-IR
- Contains O₂, which can be used as an internal standard
- Same spectral region as satellites with high sensitivity to the ground (GOSAT, OCO-2)

TCCON data product (column scaling, software Gfit):

- 1) Division by O₂ column. $XCO_2 = 0.2095 * CO_2$ -column / O₂-column Partial cancellation of systematic errors (e.g. ILS, surface pressure, H₂O, ...)
- 2) Correction for airmass-dependent biases (spectroscopy)
 - Causes: Errors in the line widths, no line-mixing, etc
 - Common to all instruments
- 3) Correction for "Ghosts" (older spectra)
- 4) Correction for bias with respect to in situ measurements based on comparisons with in situ profiling using instrumentation linked to WMO standards.

Total Carbon Column Observing Network (TCCON) in 2005

Total Carbon Column Observing Network (TCCON) in 2015

TCCON calibration by *in situ* measurements

Courtesy of Geoff Toon, NASA-JPL

2 σ standard error by comparison with in situ profiles

CO₂: 0.8 ppm CH₄: 7 ppb N₂O: 3 ppb CO: 4 ppb

Improving network consistensy

1) Monitoring of the instrumental line shape of the FTIR-spectrometers

Regular calibration of gas cells ensures consistent characterisation of the instruments, reducing the instrumental bias to below 0.05% for XCH₄. (InGOS-activity, which is now adapted by most sites globally)

- 2) Comparison of the retrieved O_2 mole fractions
- 3) Future: Travelling instrument

(Hase et al., 2013)

Satellite validation

Tropospheric XCH₄

Stratosphere:

A linear relationship exists between CH_4 and N_2O .

Troposphere:

 N_2O is quite uniform and predictable within about 2 ppb except for regions with significant sources.

Subtracting the tropospheric N_2O from the total column of N_2O allows to derive a stratospheric N_2O column.

The stratospheric CH_4 is calculated based on the stratospheric N_2O and , the CH_4-N_2O correlation in the stratosphere.

Tropospheric CH_4 is then the total CH_4 column minus it's the stratospheric CH_4 .

The tropospheric XCH_4 is not a TCCON dataproduct, but available via the InGOS project.

(Wang et al., 2014)

Calibration of tropospheric XCH₄

Difference FTS - Model XCH₄

Large differences for PYVAR-LMDZ for high and mid latitudes

TM3 and TM5 agree well for high and mid latitudes, but underestimate XCH₄ for Izana

TM3-STILT, MPI
 TM5-4DVAR, JRC
 x×x PYVAR-LMDZ, LSCE

Difference FTS - Model tropospheric XCH₄

LMDZ agrees better with FTS than TM3 and TM5

TM3 and TM5 over-estimate CH₄ at higher latitudes and underestimate at Izana

TM3-STILT, MPI
TM5-4DVAR, JRC
x×x PYVAR-LMDZ, LSCE

Differences between TM3 and ACE-FTS

Latitudinal pattern of TM5 - GOSAT

Imprint of stratospheric transport on column-averaged methane

(Ostler et al., 2014) talk in the inverse modelling session

Collaborative Carbon Column Observing Network (COCCON) (Initiative by the Karlsruhe Institute of Technology)

EM27 solar absorption spectrometer

- small portable spectrometer
- resolution 0.5 cm⁻¹ (TCCON 0.02 cm⁻¹)
- calibration by side-by-side compaison with TCCON

1) Complementing TCCON

- tropics
- low / high surface albedo
- short term campaigns
- moving platforms (e.g. ships)

Solar absorption measurements in the mid-IR (NDACC)

Total columns of 20-30 trace gases

1. constant N_2 , O_2 2. long lived CO₂, N₂O, CH₄, CFC-11, CFC-12, CFC-22 3. troposphere C₂H₂, C₂H₆, CH₂O, CO, HCN, OCS, SF₆, NH₃, H₂O 4. stratosphere O₃, HCI, CIO, CIONO₂,

HNO₃, NO₂, NO, COF₂

Several additional gases of interest for the carbon cycle

Combination TCCON - NDACC, e.g. tropospheric OCS

Summary

- TCCON is the reference network for the validation of GHG satellite retrievals and enables to link satellite retrievals to the WMO reference scale. TCCON has grown significantly over the last 10 years. Currently it is not part of the ICOS infrastructure.
- The network consistency has been improved by regular characterisation of gas cells. Using this method the site to site bias, which originates from the alignment of the FTIR-spectrometer is below 0.05% for XCH₄.
- A tropospheric XCH₄ dataproduct based on a stratospheric correction using N₂O has proven to be highly valuable for model validation.
- The models used for global CH₄ flux inversions seem to have deficiencies in the stratosphere, which has an impact on the derived flux estimates using satellite measurements.

Differences between LMDZ-model and ACE-FTS

Differences between TM5 and ACE-FTS

