SOUTH AFRICAN TRACE GAS EXPERIMENT (SATRE): COORDINATED CONTINUOUS OCEAN-ATMOSPHERE MEASUREMENTS ONBOARD THE R/V METEOR

Jošt V. Lavrič, Damian L. Arévalo-Martínez, Enno Bahlmann, Hermann W. Bange, Anita Flohr, Annette Kock, Eric Morgan, Gregor Rehder, Tim Rixen, Thomas Seifert, Tobias Steinhoff, Jan Werner, Francisca Wit

We thank also:

Stefan Lenz, Wanda Gülzow, Detlef Quadfasel, Michael Glockzin, Nuno Nunez, Karin Sigloch, Werner Ekau, Niko Lahajnar, Volker Mohrholz, Peter Brandt, Friedrich Buchholz, Martin Visbeck

InGOS, Utrecht, NL, 24-09-2015

Trace gas distribution in and above the Benguela upwelling system

> **NDAO** Morgan et al AMT 2015

InGOS, Utrecht, NL, 24-09-2015

METEOR

CRUISE R/V METEOR M99 (08/2013)

Benguela upwelling

- All year with varying intensity, different water characteristics in the North and the South
- 3 hydrographic sections perpendicular to the coast (A,B,D), plus offshore transects C,E (filaments)
- Generally lower oxygen concentrations in the upwelled waters in the north of the working area

CTD Conductivity-Temperature-Depth sonde MOR Mooring MSS Micro Structure Sonde

- martin that my

MEASURED PARAMETERS

Parameter	Methods									
	G1301	G2201-i	SUNDANS	FerryBox	DSHIP	Titration	OA-ICOS	GO	Flow-through-box	1
<u>ATMOSPHERE</u>										
xCO ²	Х							х		
δ^{13} C (CO2)										1
xCH₄	Х									
δ^{13} C (CH4)										
Pressure			Х		Х					
Wind direction					Х					
Wind speed					Х					
xN2O							х			
хСО							х			
+ flasks										
<u>WATER</u>										
xCO ²			Х					Х		P.W.
δ ¹³ C (CO2)										
xCH4										
δ ¹³ C (CH4)										
SST					Х				х	
Salinity					Х				х	
Oxygen									х	
EQ-Temp.			X					Х		1.02
рН										
ТА										
xN2O							х			
хСО							х			

Water mass characteristics

- Intermediate water of section A distinct
- Intermediate water of section
 A with higher oxygen levels,
 both vs T and vs depth
- Coldest waters at surface in section B

Oxygen vs Depth of Meteor RV M99

North vs. South The effect of the source of upwelled waters

Transect A

Transect B Transect F

16

17

Spatial patterns

• Temperature

- Cold inshore surface waters
- Indications of filaments 100+ km offshore

Pot. temperature and westward velocity on a UCTD transect between 24°S and 28°S

Spatial patterns pCO₂

- Highest partial pressures near shore
- Front between 25° S and 26° S further offshore

Atmospheric enhancement of CO_2 in the near-shore region of the NBU, relative to NDAO.

Spatial patterns CH₄

- Moderate max. oversaturation of 200 %
- High concentrations bound to inshore upwelled waters

Flux densities estimated from shipboard measurements during M99 (red dot = NDAO)

Surface chlorophyll a, SST, and 10-m wind speed for the Lüderitz domain over the course of the two-year study period.

Days which have been flagged as containing an upwelling event have been shaded.

Morgan et al, in prep

SUMMARY

- CEOD techniques -> drastically enhanced resolution and potential for new insights into sea surface patterns of trace gases
- Benguela upwelling in austral winter 2013 was characterized by relatively moderate surface trace gas concentrations, but clear relation of enhanced partial pressures with SST
- Enhanced trace gas concentrations and relation to SST holds true even in upwelling filaments > 200 km offshore
- Different oxygen content of underlying water masses drives distinct surface partial pressure / SST relations in the southern and northern part of the working area.
- Atm. anomalies of CO₂, CH₄, N₂O, CO, and O₂ can be related to upwelling events in the Lüderitz and Walvis Bay cells
- The top-down estimates of surface fluxes have been validated with in situ surface fluxes determined from shipboard measurements. Observations at NDAO provide the opportunity to capture these episodic and short-lived events that cannot be seen without continuous monitoring.
- Coastal upwelling events near Lüderitz and Walvis Bay result in a large net invasion of O2 and regionally significant emissions of the major GHGs

