The use of FTIR-spectrometry for flux measurements

Hella van Asperen, Thorsten Warneke, Justus Notholt

JRA1: WP13.2

Combine the FTIR-analyzer with micrometeorological techniques for multi-species biosphere-atmosphere exchange flux measurements

InGOS Annual Meeting 21-24 September 2015

University of Bremen

Outline

1) FTIR-analyzer with different flux measurement techniques

- Set up field experiment
- Different field experiments
- Practical considerations

2) Process based studies

- Photo and thermal degradation
- Respiratory isotopic measurements
- Ratio-nocturnal boundary layer
- ¹⁵N labeling experiment

<u>3) Outlook</u>

FTIR:

- Flux gradient system
 - Use of sampling bags
 - Sonic anenometer
 - Preferably EC-measurements

Flux gradient

FTIR:

- Flux gradient system
- Flux chamber(s)

FTIR:

- Flux gradient system
- Flux chamber(s)
- <u>Concentration measurements</u>

Flux gradient

• 1st field experiment: Peat land, Germany, August, November 2012

- 1st field experiment: Peat land, Germany, August, November 2012
- **2nd field experiment**: Harvested willow field, Denmark, April 2013
 - N₂O flux chamber intercomparison campaign, organized by RISO

- 1st field experiment: Peat land, Ge
 2nd field experiment: Harvested v
 Cooperation with UNITUS, University
- 3rd field experiment: Grassland, It

- 1st field experiment: Peat land, Germany : August, November 2012
- 2nd field experiment: Harvested willow field, Denmark, April 2013
 Cooperation with UNITUS, University of Tuscia, Viterbo, Italy
- 3rd field experiment: Grassland, Italy, August 2013
- 4th field experiment: Poplar plantation, Italy, October 2013
 Talk Giacomo Nicolini : Experimental assessment of storage variability for different GHG's, Tuesday 20 September, 15.15

Introduction

Set up field experiment

Experiments: results

Practical considerations

Future projects

The use of FTIR-spectrometry for flux measurements:

• Flux gradient system

- Type of sampling lines (Tefflon/stainless steel)
 - CO production in/by Tefflon lines
 - $\circ~$ Constant flow or stainless steel
- Type of pumps
- Flux chamber
 - Transparent/non transparent
 - o Temperature measurement in chamber

Photo and thermal degradation

- Photodegradation: the direct breakdown of organic matter by sunlight produces CO₂, CH₄, CO
- Important in arid regions

Photo and thermal degradation

Introduction

Set up field experiment

Experiments: results

Practical considerations

Future projects

Respiratory isotopic measurements

Respiratory isotopic measurements

Ratio-nocturnal boundary layer

Ratio-nocturnal boundary layer

Ratio-nocturnal boundary layer

15N labelling technique

15N labelling technique

GHG (fluxes) in water

Outlook