Real-time analysis of δ^{13} C- and δ D-CH₄ in ambient air with laser spectroscopy: Method development and intercomparison

Simon Eyer¹, Béla Tuzson¹, Maria E. Popa², Carina van der Veen², Thomas Röckmann², Michael Rothe³, Willi A. Brand³, Rebecca Fisher⁴, David Lowry⁴, Euan G. Nisbet⁴, Matthias S. Brennwald⁵, Eliza Harris¹, Christoph Zellweger¹, Lukas Emmenegger¹, Hubertus Fischer⁶ and Joachim Mohn^{1,*}

¹ Empa, Laboratory for Air Pollution & Environmental Technology, Dübendorf, Switzerland

² Utrecht University (UU), Institute for Marine and Atmospheric research Utrecht (IMAU), The Netherlands

³ Max-Planck-Institute (MPI) for Biogeochemistry, Jena, Germany

⁴ Royal Holloway University of London (RHUL), Department of Earth Sciences, Egham, UK

⁵ Eawag, Water Resources and Drinking Water, Dübendorf, Switzerland

⁶ University of Bern, Climate and Environmental Physics, Switzerland

*Correspondence to: J. Mohn (Joachim.mohn@empa.ch)

In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH₄ mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N₂O and CO₂. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole/mole) methane is 0.1‰ and 0.5 ‰ for δ^{13} C- and δ D-CH₄ at 10 min averaging time.

Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 ‰ and 1.9 ‰ for δ^{13} C and δ D-CH₄, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass-spectrometry (IRMS) based on glass flask and bag sampling and real time CH₄ isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ^{13} C-CH₄ analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ^{13} C- and δ D-CH₄, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH₄ to further improve the interlaboratory compatibility.