Verification of methane emissions from atmospheric observations of CH₄, ¹³CH₄, and related tracers at the Lutjewad tower Bert Scheeren¹, Huilin Chen^{1,2}, Nelly Uitslag¹, Bert Kers¹, Marcel de Vries¹, Harro Meijer¹, Ute Karstens⁴, Carina van der Veen³, and Thomas Röckmann³ - 1. CIO, University of Groningen, The Netherlands - 2. CIRES, University of Colorado, Boulder, USA - 3. IMAU, Utrecht, The Netherlands - 4. Max-Planck-Institute for Meteorology, Hamburg, Germany ## **Abstract** In this study we evaluate surface emissions estimates of CH₄ based on observations from the Lutjewad atmospheric measurement station in the Netherlands (6.3529º E, 53.4037º, 1 m asl) for the years 2006 to 2014. An established approach to estimating fluxes from continuous observations is the "Radon-Tracer-Method" where ²²²Radon soil emission flux estimates are used to scale concurrent fluxes of greenhouse gases within the catchment area of the observation site. However, the Radon-Tracer-Method suffers from considerable uncertainties from estimating the appropriate catchment area and the ²²²Radion soil flux in the catchment area. On a regional to continental scale inverse modelling studies using observational input are a more sophisticated tool to evaluate emission budgets of CH₄ and other greenhouse gases. To better understand and quantify the CH₄ emissions in the station catchment area we evaluated the agreement between observed and model-based hourly mean time series of CH₄ and 222 Radon as well as Δ CH₄/ Δ ²²²Radon ratios. Model results are based on simulations from the TM3-STILT model system (Stochastic Time-Inverted Lagrangian Transport model coupled with the TM3 chemistry-Transport model to determine the boundary conditions outside Europe) with "a-priori" CH₄ emissions from the EDGARv4.2 emission database and a new Radon flux map developed within InGOS. Overall, we find that the ²²²Radon is simulated quite well by the TM3-STILT model system within a range of typically ±10% whereas the CH₄ can be underestimated up to a factor of two. These findings indicate that current methane emission estimates (as a whole) based on EDGARv4.2FT emission inventory in the catchment area of Lutjewad might be significantly underestimated. In addition, we use the isotopic compositions of ¹³C and ²H (Deuterium) in CH₄ from concurrent flask measurements taken at Lutjewad to partition CH₄ sources and find that the fraction of fossil related EDGARv4.2 emissions is slightly overestimated, but within the uncertainty. Furthermore, we study the tracer correlations of CH₄ with CO₂ and CO to point to the potential sources under various conditions.