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Abstract

The mixing height (MH) is a crucial parameter in commonly used transport models
that proportionally affects air concentrations of trace gases with sources/sinks near the
ground and on diurnal scales. Past synthetic data experiments indicated the possibil-
ity to improve tracer transport by minimizing errors of simulated MHs. In this paper5

we evaluate a method to constrain the Langrangian particle dispersion model STILT
(Stochastic Time-Inverted Lagrangian Transport) with MH diagnosed from radiosonde
profiles using a bulk Richardson method. The same method was used to obtain hourly
MHs for the period September/October 2009 from the Weather Research and Fore-
casting (WRF) model, which covers the European continent at 10 km horizontal reso-10

lution. Kriging with External Drift (KED) was applied to estimate optimized MHs from
observed and modelled MHs, which were used as input for STILT to assess the im-
pact on CO2 transport. Special care has been taken to account for uncertainty in MH
retrieval in this estimation process. MHs and CO2 concentrations were compared to
vertical profiles from aircraft in-situ data. We put an emphasis on testing the consis-15

tency of estimated MHs to observed vertical mixing of CO2. Modelled CO2 was also
compared with continuous measurements made at Cabauw and Heidelberg stations.
WRF MHs were significantly biased by ∼10–20 % during day and ∼40–60 % during
night. Optimized MHs reduced this bias to ∼5 % with additional slight improvements
in random errors. The KED MHs were generally more consistent with observed CO220

mixing. The use of optimized MHs had in general a favourable impact on CO2 trans-
port, with bias reductions of 5–45 % (day) and 60–90 % (night). This indicates that a
large part of the found CO2 model-data mismatch was indeed due to MH errors. Other
causes for CO2 mismatch are discussed. Applicability of our method is discussed in
the context of CO2 inversions at regional scales.25
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1 Introduction

Atmospheric tracer transport models are a crucial tool to predict air quality and at-
mospheric composition. This information is needed for environmental authorities and
political decision makers. In addition, such models are regarded as an important tool
to verify budgets of greenhouse gases and most importantly CO2 (Nisbet and Weiss,5

2010). Within the top-down approach dispersion models are used to close the scale
gap between global models and continental point observations by simulating regional
greenhouse gas transport (Dolman et al., 2009; Gerbig et al., 2009). Such models
are needed to extract source and sink information in CO2 signals, often obtained by
observations performed within the Planetary Boundary Layer (PBL), that show large10

variability near the omni-present source/sink processes targeted by the inversion es-
timates (Lin et al., 2003; Gerbig et al., 2003a, b, 2006). This signal variability is not
only a consequence of variations of the terrestrial fluxes, but also of vertical mixing
by atmospheric turbulence, which is hoped to be resolved adequately by the trans-
port model. Denning et al. (1995) demonstrated the impact of PBL parametrizations15

used within transport models on the distribution of atmospheric CO2 due the covari-
ance of photosynthesis/respiration and the mixing height (MH), both being a function
of incoming solar radiation, at seasonal and diurnal scales. The MH is usually defined
as the height up to which tracers emitted from surface get well mixed within about an
hour (Seibert et al., 1998). On these short time scales the MH proportionally affects20

tracer concentrations in the PBL. For instance, the footprint of a CO2 measurement,
i.e. the spatially integrated surface influence on the measured signal, drops to 30 %
after one day, thus the footprint very close (∼50–150 km) to the observation site is
most important and there the footprint simply scales with 1/MH (Gerbig et al., 2003b,
2008). As a consequence the MH is one of the most important parameters in air pollu-25

tion and greenhouse gas transport modelling at regional scales and at the same time
considered to be one of the major sources of uncertainty in CO2 transport modelling
(Stephens and Keeling, 2000; Gerbig et al., 2009). For instance, previous model–model
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and model-data comparisons of mesoscale models found differences in simulated MH
∼25–30 % during daytime over land (Sarrat et al., 2007b, a; Gerbig et al., 2008; Hu
et al., 2010, Kretschmer et al., 2012). Gerbig et al. (2008) showed that MH discrepan-
cies on this order lead to uncertainties of 3 ppm in CO2, which corresponds to about
30 % uncertainty in regional fluxes, simulated in summertime over a domain covering5

most of Europe. During stable conditions mixing is sporadic and weak such that a clear
definition of a MH is difficult (Seibert et al., 2000). Nevertheless, wind shear caused
by surface friction can very well lead to the development of a mixing layer, and thus
a MH can be diagnosed (Stull, 1988; Vogelezang and Holtslag, 1996; Seibert et al.,
2000). As a consequence, model errors in MH at night are at least a factor two larger10

and are substantially biased (Gerbig et al., 2008), which has been shown to cause
biases in simulated CO2 concentrations (Kretschmer et al., 2012), and which in turn
leads to potentially serious systematic errors in the retrieved fluxes. For daytime data
such biases of the transport model are usually neglected in inversions, while nighttime
data obtained within the PBL are not used to avoid biases in the inferred surface fluxes15

(e.g. Broquet et al., 2011). Because nighttime data also contain useful information to
constrain respiration fluxes and other emission sources, like anthropogenic fossil fuel
CO2 fluxes, this can be regarded as a major deficit of current CO2 inversions (Dolman
et al., 2009).

Previous studies have shown in synthetic data experiments the possibility to improve20

the simulated CO2 transport by considering observed MH (Kretschmer et al., 2012,
2013). Kretschmer et al. (2013) interpolated MHs from point observations in space-
time to a domain covering most of Europe using KED, which uses simulated MHs as
a covariate to add physical constraints to the interpolation. This geostatistical approach
yields optimized MH fields at the resolution of the meteorological driver fields produced25

by the WRF model. Output from WRF and KED MHs were then used to drive the La-
grangian particle dispersion model STILT to simulate turbulent transport of CO2. In
a synthetic data experiment Kretschmer et al. (2013) demonstrated the effectiveness
of this method to largely reduce bias and random errors in simulated CO2 time series
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caused by MHs errors. The experiment assumed that the true MH was known in a Eu-
ropean network of about 60 MH observations two times a day, comparable to existing
radiosonde observations. Note that radio sounding networks have relatively good data
coverage and are often used as benchmark for novel approaches for MH detection
(Seibert et al., 2000).5

In this paper we follow the approach of Kretschmer et al. (2013), using MHs derived
from radio soundings in the Integrated Global Radiosonde Archive (IGRA) (Durre and
Yin, 2008). Tracer transport simulated using STILT and driven by WRF meteorology is
compared to observations made during the IMECC (Infrastructure for Measurements of
the European Carbon Cycle1) aircraft campaign and continuous measurements made10

at Cabauw (CBW) and Heidelberg (HEI). We selected these two sites as they are
known for their complexity, here an accurate model approximation of the MH is most
relevant. At both sites high quality, continuous observations exist for several decades.
CBW has the further advantage of providing co-located meteorological measurements
up to 200 m (a.g.l.), allowing MH detection in stable boundary layers. The use of real15

observations introduces two further complications in comparison to a synthetic data
experiment: (1) the true MH isn’t known exactly due to measurement errors, data limi-
tations and methodological uncertainty (Seidel et al., 2012) and (2) a verification of the
method by comparing simulated and observed CO2 abundances is rendered difficult as
the observed signal is a result of both, surface fluxes and transport. The first is the very20

same quantity that we have limited knowledge about and that an atmospheric inver-
sion tries to solve for (or optimize). The latter is affected by other uncertainties besides
those in MH (Gerbig et al., 2009), e.g., deep convection, or horizontal advection.

We tried to cope with complication (1) by objectively estimating the uncertainty for
each individual MH estimate based on an analysis of high resolution radiosonde pro-25

files, which are part of the UK meteorological office (UKMO) database. This MH uncer-
tainty was propagated through the KED estimation and evaluated with observed me-
teorology and CO2 measurements obtained during the IMECC campaign in Septem-

1Website: imecc.ipsl.jussieu.fr

4631

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ber/October 2009, to assure the consistency of the estimated MH to effective CO2
mixing in the atmosphere, something we henceforth call the “effective MH”. In addition
we performed a cross-validation of the KED MHs using the IGRA MHs and compare to
independent UKMO radiosondes not part of IGRA.

The second complication is more difficult to tackle, because, uncertainties in prior5

fluxes were shown to have substantial impact on simulated CO2 concentrations (Peylin
et al., 2011). Here, we compare results of two model setups with fundamentally different
PBL parametrizations, the Yonsei University Scheme (YSU, K-diffusion, Hong et al.,
2006) and the Mellor–Yamada–Janjic scheme (MYJ, Turbulent Kinetic Energy, Janjic,
2002), using the same CO2 surface fluxes, and in addition utilize the auxiliary tracer CO,10

to assess the model performance. These two schemes are regarded as appropriate for
the purpose of our study, because firstly, they differ conceptually, the YSU scheme is
based on K-diffusion and MYJ is solving for the budget of Turbulent Kinetic Energy
(TKE), and secondly, it is known that MYJ produces weaker vertical mixing compared
to YSU and other schemes (Hu et al., 2010), thus a significant divergence in simulated15

transport of CO2 can be expected.
The objectives of our paper are to clarify the following questions: (1) what is the

mismatch in CO2 transport and can we improve CO2 transport by reducing errors in
MHs? (2) What is the model-data mismatch in MH of high resolution WRF simulations?
(3) Can we adequately predict the MH from a limited set of data samples affected by20

measurement uncertainties for the whole European simulation domain? (4) Is the KED
predicted MH consistent with the effective MH?

The content of the paper is structured in the following way. We start by introducing
the IMECC campaign and continuous measurement site data. Some effort is spent
on explaining MH derivation from IGRA data and its uncertainty, as well as the KED25

approach. The method section concludes with a summary of the WRF-STILT mod-
elling system and flux inventories. In the first part of the results section we present
comparisons of WRF MHs to IGRA data and evaluation of KED optimized MHs as
a prerequisite for tracer transport with STILT. The second part shows the comparison
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of CO2 mixing ratios from our four simulations (two PBL schemes, henceforth called
STILT/MYJ, STILT/YSU and each with and without using optimized MHs from KED)
with aircraft and ground based in-situ measurements. We then discuss our results with
respect to flux and transport uncertainties, followed by a discussion of the potential of
the method for regional CO2 inversions and an outlook on further research.5

2 Data and methods

2.1 Tracer observations and radio soundings

Figure 1 gives an overview on the simulation domain and location of available data
sources, which are presented in the following.

2.1.1 IMECC campaign10

The IMECC campaign was the first European aircraft campaign to calibrate 6 ground
based Fourier Transform Spectrometer (FTS) instruments that are used to retrieve
column-averaged CO2 for comparison to satellite measurements, e.g. from GOSAT.
During the campaign from 28 September to 9 October 2009 eight flights were con-
ducted. In 20 flight hours 12 000 km were flown with a special emphasis on spiral flights15

to retrieve vertical profiles usually covering an altitude from ∼0.3–13 km (Fig. 1a). Mea-
surements were also made during start and landing of the aircraft, providing some
profiles starting from the surface, which allowed us to evaluate tracer concentrations in
stable boundary layers. CO2 and CO was measured at 0.5 Hz and 1 Hz with a precision
of 0.1 ppm and 2 ppb, respectively. From the measured meteorology and tracer profiles20

we selected five profiles for model-data comparison as further explained in Sect. 3.2.1.
The detailed setup of the measurement equipment is described in Geibel (2011).
Height above ground information was estimated from the aircraft altimeter and using
output from a digital elevation model, i.e. the global 30 arc seconds topography map
(GTOPO30, http://www1.gsi.go.jp/geowww/globalmap-gsi/gtopo30/gtopo30.html).25
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2.1.2 Ground observations: Cabauw and Heidelberg

The Cabauw 213 m tall tower with inlets for CO2 and CO measurements at 20, 60,
120 and 200 m (a.g.l.), is operated by ECN (Energy research Centre of the Nether-
lands) since 1992. CBW is located 25 km south-west of Utrecht, Netherlands (51.97◦ N,
4.93◦ E, −0.7 m a.s.l.) in an area of managed grassland. The area of 100 km around5

the tower contains a population of more than 7 million people. This local influence of
significant contributions of sources and sinks makes the concentration footprint area of
Cabauw to one of the most intensive and complex source areas of greenhouse gases
in the world, causing complex patterns in observed signals (Vermeulen et al., 2011).
The sampling set-up is described in Vermeulen et al. (2011). Meteorological observa-10

tions of standard parameters like windspeed, temperature and humidity are made at
altitudes 2, 10, 20, 40, 80, 140, 180, 200 m (Ulden and Wieringa, 1996). We use these
meteorological measurements similar to Vogelezang and Holtslag (1996) to obtain MH
as is further explained in Sect. 2.2.

The second surface observation site is located in the suburbs of Heidelberg15

(49.417◦ N, 8.675◦ E, 116 m a.s.l.), within the highly populated Upper Rhine valley in
south-western Germany. The inlet for CO2 and CO in-situ measurements is situated
on the roof top of the Institut für Umweltphysik, University of Heidelberg ∼30 m (a.g.l.).
Levin et al. (2011) have shown the strong link between PBL mixing and observed
CO2 variability at HEI. Concentration observations are performed using the Heidelberg20

Combi-GC as described by Hammer et al. (2008).

2.1.3 Radiosonde data

Radiosondes (RS) are usually released one hour before the synoptic hours, most
launches took place at synoptic hours 00:00 and 12:00 UTC. The balloon rises with
a speed of ∼5 m s−1, i.e. it takes one radiosonde about 10–15 min to sample the25

whole PBL. The data contains vertical profiles of pressure, temperature, relative hu-
midity, humidity mixing ratio, sonde position, wind speed and wind direction for al-
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titudes up to 20–30 km. The reported height is accurate to within ±40 m (assessed
at UKMO station Aberporth, c.f. http://badc.nerc.ac.uk/). Data are usually reported
at standard pressure levels at 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150,
100, 70, 50, 30, 20 and 10 hPa. In IGRA additional levels are included whenever
significant deviations from linearity in the logarithm of pressure between two stan-5

dard levels were observed. We use the derived data set version 2 of IGRA (Durre
and Yin, 2008) maintained by the NOAA National Climatic Data Center available at
http://www1.ncdc.noaa.gov/pub/data/igra/derived-v2/. This special version of IGRA is
thoroughly quality controlled and besides the standard meteorological variables pro-
vides derived quantities useful for studies of vertical structure, including geopotential10

height, derived moisture variables, and calculated vertical gradients of several variables
(Durre and Yin, 2008). On average, IGRA soundings had 16 data levels (typically 13–19
levels) below a height of 500 hPa. Here we consider only soundings from which a MH
> 0 m using a bulk Richardson number method (c.f. Sec. 2.2) could be detected and
with non zero surface wind speed measurement (c.f. Eq. 1). In the period 24 August to15

9 October 2009 we used 6722 (3417 daytime and 3305 nighttime) soundings.
In order to obtain estimates on typical uncertainties in MH retrieved from radio

soundings we assessed instrument noise from signal standard deviations in UKMO
high resolution radiosonde profiles further explained in Sect. 2.2.1. These we ob-
tained from the British Atmospheric Data Centre (BADC) of the Natural Environment20

Research Council’s (NERC) designated data centre for the atmospheric sciences
(http://badc.nerc.ac.uk/). The UKMO soundings contain 2 Hz data from UK stations
and also from Gibraltar, St. Helena and the Falklands. Two of the sounding stations
were not included in the IGRA database, providing for an opportunity for validating the
KED spatial interpolation of MHs derived from the IGRA soundings (Sec. 3.1.2).25

2.2 Diagnosing the mixing height

It is known that methods to diagnose the MH from profiles of meteorological variables
detect different features in a given profile. An obvious example is the detection of the
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top of the residual layer instead of the mixing layer in stable conditions, leading to sys-
tematically different MH estimates (Seidel et al., 2010, 2012; Seibert et al., 2000). This
necessitates the consistent use of one single method to avoid methodological differ-
ences in comparisons. Furthermore, for a method to be useful for our purposes it is
important that it provides estimates consistent with the effective MH of traces gases5

further discussed in Sect. 3.2.1. Bulk Richardson number methods (Ri -methods) were
suggested for air pollution studies because they better correspond with the effective
MH than other methods (Seidel et al., 2010, 2012; Seibert et al., 2000). Ri -methods
are also considered suitable for convective and stable boundary layers and allows for
automatic processing of large amounts of data (Seidel et al., 2012). Note that there10

are different implementations of Ri -methods with associated parameter values, most
importantly for the critical Richardson number Ric (Vogelezang and Holtslag, 1996).
Here, we estimated the MH using the Ri -method suggested by Vogelezang and Holt-
slag (1996):

Rig(h) =
(g/θvs)(θvh −θvs)(h− zs)

(uh −us)2 + (vh − vs)2
(1)15

Rig is the Richardson number evaluated at each height h above the surface height s
(here 17 m) given profiles of virtual potential temperature (θv), wind components (u, v)
and height above ground (z), as well as the gravitational acceleration (g = 9.81
,ms−2). A given profile of Rig was linearly interpolated to the MH where Rig = Ric, with20

Ric = 0.25, which is the common value recommended in the literature (Vogelezang and
Holtslag, 1996; Seibert et al., 2000; Seidel et al., 2012). For the value of the surface
level height, Vogelezang and Holtslag (1996) tested 20, 40, and 80 m and found little
sensitivity. Here we have chosen the height at the centre of the first WRF vertical layer
which is at ∼17 m. IGRA profiles were linearly interpolated on a logarithmic pressure25

scale to 17 m from the surface measurement and the first upper air level> 17 m.
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2.2.1 Estimation of MH uncertainty

The uncertainty of MH diagnosed from Eq. (1) was approximated following the method
introduced by Biavati et al. (2013). Here we briefly summarize the basic steps of apply-
ing the method to our MH retrievals. First, the variability in the 2 Hz UKMO RS signal of
the individual profiles of pressure, temperature, relative humidity and wind components5

was estimated for each radio sounding. This was accomplished by applying a running
standard deviation on each of the available RS profiles, after removing local trends by
subtracting a running mean of three data points from each data point in a given pro-
file. The typical noise of each variable was then assumed to be uniform for all UKMO
and IGRA soundings. Second, this noise of the RS signal was propagated as error10

variance through all calculations needed to get the Rig profiles, including Eq. (1) using
standard statistical error propagation. This results in a discrete profile of errors, i.e. one
error estimation for each discrete sample point in a given Rig profile. These error pro-
files were computed for all considered Rig profiles and were then used to estimate the
MH uncertainty as follows. All profiles of a given radio sounding including the height15

above ground z and the Rig profiles are conceived as sequences of real numbers (data
points) with common indices. The profile of errors for a given Rig profile has then been
used to estimate the uncertainty of localizing the MH σMH within that profile:

σ2
MH =

1
l1 + l2

m+l2∑
k=m−l1

(zm − zk)2 (2)

20

Here, zm is the value at index m of the height profile of the given radio sounding at
which the MH was localized using the Richardson method as described in Sec. 2.2.
The numbers l1, l2 ∈N are found by considering the heights zk which are elements of
the set U of physical consistent data points in the profile surrounding zm, i.e. they are
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within the confidence neighbourhood of zm:

Uzm ={zi : i ∈ {m−1,m,m+1}}∪ (3){
zj : m− l1 ≤ j ≤m+ l2, ζ (m, j ) ≤ γ

}
Where ζ is the measure of confidence based on Welch’s t test statistic:5

ζ (i , j ) =
|Rig(zi )−Rig(zj )|

σ2
i +σ2

j

(4)

In the denominator we use the variances of the error profile which corresponds to the
Rig profile of a given sounding as described above. From Monte-Carlo simulations it
was found that values of 0 < γ ≤ 3 are physically consistent, for our purposes we set10

γ = 2. The advantage of this method is the ability to express the uncertainty on a per
sounding basis, instead of deriving a statistic of general uncertainty over all profiles as
was done e.g. by (Seidel et al., 2012). To account for additional uncertainty caused by
the low resolution of IGRA RS we assumed additional 50 m uncertainty, which is based
on the analysis of (Seidel et al., 2012). The estimated uncertainties are shown in Fig. 2.15

This combined MH uncertainty is further propagated through the KED estimation as
explained in the following section. The usefulness of the derived MH uncertainties will
be evaluated in Sect. 3.1.

2.2.2 Optimizing modelled MHs

Following the method proposed by Kretschmer et al. (2013) we need to predict fields20

of the MH covering the full European domain at 10 km spatial and hourly temporal
resolution, which are then used as input fields for the STILT model (Sec. 2.3). The
geostatistical approach Kriging with an External Drift (KED) allows us to objectively
take MH uncertainty (Eq. 2) and interpolation uncertainty into account. The purpose
of the external drift is to guide the interpolation with data that is more easily obtained25
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than the actual observations and which add some physical process information to the
linear prediction system. Since kriging is a well established geostatistical approach, we
summarize the main steps and the reader is referred to the standard literature (e.g.
Cressie, 1993; Wackernagel, 1995). The MH Zi∗(u,t) at unobserved location in space
u and at time t is predicted by:5

Zi∗(u,t) =
n∑

i=1

wi (u,t)Zi(ui ,ti ) (5)

Where the value of Zi∗(u,t) is obtained from a weighted combination of n observed MHs
Zi diagnosed with Eq. (1). KED solves for the weights wi such that interpolation error is
minimal (Best Linear Unbiased Estimator, BLUE). The map of MHs Zi is conceptualized10

as random field composed of deterministic mean, referred to as trend, and spatially
coloured random noise (auto-correlated). For this MH field second-order stationarity is
assumed, i.e., the auto-correlated part depends on the separation distance only and
is translation invariant throughout the estimation window, which is a smaller part of the
domain. The auto-correlation of the residuals (signal-trend) is usually modelled by one15

of several permissible variogram functions as explained below. The trend (m∗(u,t)) in
KED is assumed to be a linear combination of external drift S such that it satisfies:

m∗(u,t) = α∗ +β∗S(u,t)

E [Zi(u,t)] =m∗(u,t)
(6)

The coefficients (α, β) are first solved for by the ordinary least squares and than in20

a second iteration predicted by KED together with the KED weights taking space-time
auto-correlation of the MHs into account. Since the second iteration usually has only
a minor impact on prediction skill (Hengl et al., 2007), we omit this step. Here S is ob-
tained from MHs estimated from WRF simulated meteorology by using Eq. (1). As was
shown in Kretschmer et al. (2013) KED estimates are better able to resemble a realistic25

fine scale variability in MH field when using the covariate compared to ordinary kriging,
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which only uses a model of auto-correlation and the observed MH samples for in-
terpolation. Kriging is mathematically equivalent to data assimilation techniques used
in numerical weather prediction (Optimal Interpolation, 3DVAR; Kalnay, 2002; Wikle
and Berliner, 2007), and S has a similar role as the background in these approaches.
Therefore, one can interpret KED as a way to correct or optimize the background MHs5

in the sense of model-data fusion (Wackernagel, 1995). We prefer the term MH opti-
mization here as it emphasises the need for a high quality background field, i.e., the
variability in the predicted MHs can only be as realistic as provided by the meteoro-
logical model owing to the highly underdetermined problem. In this regard Hengl et al.
(2007) highlight the importance of a high correlation of background and observations,10

also discussed in the context of MH prediction by Kretschmer et al. (2013).
The underlying auto-correlation of the MH field is approximated with a variogram

model fitted to the sample variogram, which is a function of the distance in space (hu)
and time (ht) between any pair of MH sample-trend residuals (ResZi) of the conditioning
data binned in distances classes of size (N):15

γ̂(hu,ht) =
1

2N(hu,ht)

∑
[ResZi(u,t)−ResZi(u+hu,t+ht]

2 (7)

Here, the assumption is that as auto-correlation decreases, the dissimilarities (semi-
variances) between residual pairs increase with separation distance and are bounded
by a maximum value called the sill. Space and time variogram were calculated sepa-20

rately (by setting ht = 0 and hu = 0 for the space and time sample variograms, respec-
tively), and then combined linearly with coefficients obtained from the sill values and
a global sill to yield the product-sum variogram model, which allows for space-time in-
teraction as described in detail in De Cesare et al. (2001). The global sill is found by
evaluating Eq. (7) beyond the distances in space and time where the respective sills25

were reached.
Due to the strong diurnal cycle in MH (a result from the solar insulation driven tur-

bulent mixing) in combination with limitations in temporal resolution of the conditioning
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data (the MH observations), special care has to be taken to derive the residuals needed
in Eq. (7). Similar to Kretschmer et al. (2013) we calculated spatial sample variograms
for day and night observations separately, i.e. 12:00 UTC and 00:00 UTC. MHs derived
from WRF simulations were sampled at the gridbox closest to a given IGRA profile.
This was repeated for each of the WRF PBL schemes used (YSU and MYJ). We then5

fitted a weighted linear regression model to the observed MH as a function of the WRF
MHs, taking the reciprocal of the estimated MH uncertainty from Eq. (2) as weights.
The resulting regression residuals were taken to evaluate Eq. (7). Variogram models
were fitted to each sample variogram shown in Fig. 3. The day variogram model was
used to predict hours 9 to 16, which was found suitable for this domain by Kretschmer10

et al. (2013). Since the 12 h resolution of the IGRA data is too coarse to constrain the
variogram model sufficiently, we make use of the hourly MHs from the WRF simula-
tions, assuming that the resulting semivariance closely resembles the true variability.
This assumption is reasonable since we have chosen PBL schemes that were shown
to realistically simulate PBL dynamics (Hu et al., 2010). We sampled WRF MHs again15

separately for day and night. Because we have used WRF MHs as the MH data points,
i.e. synthetic data, instead of real IGRA data we can not use the same WRF MHs as
trend to calculate the residual terms (ResZi) in Eq. (7). Instead we follow the usual
procedure to model the diurnal pattern in the WRF MHs as deterministic trend using
an oscillating sinusoidal function. The residuals between this model and the WRF MH20

were then used to compute Eq. (7) for the time domain. MH uncertainty obtained from
Eq. (2) is considered in the MH prediction by adding this uncertainty to the diagonal
elements of the covariance matrix used in the KeD system of linear equations as sug-
gested by Wackernagel (1995). This covariance matrix contains co-variances between
any pair of MH observations that were computed by subtracting the semivariances from25

the sill values obtained from the variogram model fit.
The described computations were executed using a modified version of the edin-

burgh Space Time statistics (Spadavecchia, 2009) and the geoR package for the R
programming language (Diggle and Jr., 2007; Ribeiro Jr. and Diggle, 2001).
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2.3 Transport modelling

Our transport modelling system consists of the eulerian WRF model, which provides
hourly meteorological driver fields on a 10 km grid for the STILT model. STILT is a re-
ceptor oriented Lagrangian particle dispersion model introduced by Lin et al. (2003).
Since we basically use the same modelling system as in Kretschmer et al. (2013), we5

give only a brief summary here. The STILT model calculates for a given grid box i , j of
the domain, the rate of change in tracer concentration at the receptor r , e.g. a tall tower
observation site, over time step m from a footprint function f and the surface fluxes F
(Gerbig et al., 2003b; Lin et al., 2003):

∆Cm,i ,j (xr ,tr ) = f (xr ,tr |xi ,yi ,tm)F (xi ,yi ,tm) (8)10

The footprint element f (. . .) relates fluxes at a specific location and time to changes
in the mixing ratio along the particle trajectory. The flux function F (. . .) represents any
combination of offline flux input and online calculated fluxes, which are described in
Sect. 2.4. The footprint is calculated by releasing ensembles of 100 particles at the15

receptor and for each particle advection with the mean wind provided by WRF is
computed. As particles move further away from the receptor the grid is aggregated
to a coarser resolution to account for effect of undersampling caused by the rela-
tively small ensemble size. Turbulent diffusion is implemented as stochastic process
which is added to the mean particle trajectory. Mass fluxes related to moist convection20

(updraft, downdraft, and entrainment fluxes) are provided by WRF through the Grell–
Dévényi scheme (Grell and Dévényi, 2002), and are applied in STILT in a stochastic
way (Nehrkorn et al., 2010). The WRF setup is summarized in Table 1.

Turbulent vertical dispersion of particles in the mixing layer is controlled by the pro-
file of vertical velocity variance σw , which determines the amount of random deviation25

from the mean trajectory of a given particle, and the profile of TL, the Lagrangian time
scale describing the decorrelation in the particles movement (Lin et al., 2003). The
profiles of TL and σw are mainly a function of the MH, but depend also on roughness
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length, Monin–Obukhov length, convective velocity scale, and frictional velocity, follow-
ing Hanna (1982). STILT determines the mixing height offline from the meteorological
driver fields using a Ri -method, or MHs are prescribed externally (Lin et al., 2003). For
the control simulations we determine the MH from WRF output using the Ri -method
(Eq. 1). To reduce the impact from MH errors on tracer transport we use the KED opti-5

mized MHs (cf. Sect. 2.2.2) as external input for STILT. The results of Kretschmer et al.
(2013) indicate that the dominant effect MH errors on the transport simulation is the
turbulent diffusion of tracer particles up to a wrong altitude, suggesting that side effects
of their proposed method affect the tracer concentrations in the mixing layer to a minor
extend. The purpose of the present study is to further test the method by evaluating the10

simulated tracer time series against data and by comparing inter-model differences.
Transport was simulated hourly for Cabauw and Heidelberg in the period of 1

September to 9 October 2009, and for receptors located along the IMECC flight track
(Fig. 1). The STILT domain was setup to cover most of Europe on a Cartesian grid at
1/12◦×1/8◦(∼10km×10km) as in Gerbig et al. (2008) with 41 vertical levels similar to15

our WRF setup.

2.4 Boundary conditions and input fluxes

For the transport simulation of any tracer lateral boundary conditions and surface fluxes
need to be prescribed. These fields were re-projected and aggregated to the STILT grid
taking mass conservation into account. In the following we give a summary of the input20

data we used for individual tracers.

2.4.1 CO2

The CO2 boundary conditions were taken from 6 hourly analysed fields of 2009 from
the Jena Inversion2 version 3.3 on a 4◦ ×5◦ grid with 19 vertical levels (Rödenbeck,
2005).25

2available at www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2-3D/
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To prescribe combustion fluxes we make use of the 2005 Emission Database for
Global Atmospheric Research (EDGAR) on a 0.1◦ ×0.1◦ grid to consider anthro-
pogenic flux contributions (Source: EC-JRC/PBL. EDGAR version 4.1. http://edgar.jrc.
ec.europa.eu/, 2010). Similar to Steinbach (2010) we extrapolated country total emis-
sions to the year 2009. The extrapolation is based on BP statistics obtained from5

http://www.bp.com/statisticalreview. These emissions were then spatially distributed
down to the grid level based on the 2005 dataset. Time factors were obtained from
the EDGAR database and then applied to yearly fluxes to resolve the daily cycle.

Contributions from oceanic fluxes were accounted for by including the Takahashi
et al. (2009) climatological inventory for the reference year 2000 and revised in Octo-10

ber 2009 provided monthly with a spatial resolution of 4◦ ×5◦.
Vegetation fluxes of the Net Ecosystem Exchange (NEE) were calculated within

STILT based on the Vegetation Photosynthesis and Respiration Model (VPRM; Ma-
hadevan et al., 2008). VPRM is a diagnostic model that uses as input shortwave
radiation and 2 m temperature, both calculated within WRF (variables SWDOWN15

and T2), and two vegetation indices. These indices, the Enhanced Vegetation Index
(EVI) and the Land Surface Water Index (LSWI) are obtained from 500 m, 8 daily
MODIS (Moderate Resolution Imaging Spectroradiometer) satellite surface reflectance
data (http://modis.gsfc.nasa.gov). VRPM indices are scaled with parameters optimized
against eddy covariance flux measurements for Europe (Pillai et al., 2011) to derive res-20

piration and Gross Ecosystem Exchange (GEE) fluxes separately (Mahadevan et al.,
2008). There is one parameter set for each of the eight vegetation classes used. Frac-
tional vegetation coverage for each model grid cell was derived from SYNMAP (Jung
et al., 2006) with a horizontal resolution of ∼1 km2. VPRM fluxes were calculated once
from SWDOWN and T2 produced by the WRF-YSU simulation and then used for all25

other STILT simulations, which effectively resembles an offline flux model similar to
the other offline fluxes (EDGAR, ocean fluxes). This approach ensures that all trans-
port simulations use consistent biospheric fluxes and thus facilitates the interpretation
of the results, avoiding the impact from e.g. changes in temperature and cloud cover
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due to MH alterations on the fluxes. In contrast to CO, emissions due to fire were not
considered explicitly, because they are known to have only negligible impact on CO2
concentrations.

2.4.2 CO

CO is used as auxiliary tracer to isolate impact from combustion fluxes on CO2 signals.5

Initial and boundary conditions for the CO transport were obtained from re-analysed
4-D fields provided as part of the Monitoring Atmospheric Composition and Cli-
mate (MACC) project (source: http://data-portal.ecmwf.int/data/d/macc_reanalysis/).
The MACC re-analyisis is provided on a 6 hourly, 1.125◦ ×1.125◦ grid with 60 verti-
cal levels. Similar to the CO2 tracer we obtain anthropogenic emission from EDGAR10

(Sec. 2.4.1). The impact of fire emissions are considered by including flux fields from
the Global Fire Emissions Database (GFED; source: http://www.globalfiredata.org) in
version 3.1. We used the 3 hourly fields on a 0.5◦×0.5◦ grid (Mu et al., 2011). The major
sink for CO is atmospheric destruction by hydroxyl radical OH which is computed within
STILT. The soil uptake of CO is an order of magnitude smaller than the OH reaction15

and is therefore neglected.

2.5 Statistical measures

To summarize the performance of the transport simulation and MH optimization we
report some commonly used statistical measures. Bias b is computed as the mean
difference between pairs of estimated and observed quantity, such that the bias is neg-20

ative when the estimations are on average smaller than the observation and positive if
the estimates were greater, respectively. The random error denotes the standard de-
viation s of these differences. In addition, we report the root mean squared error as
a function of bias and random error: RMSE = (b2 + s2)1/2. To test the statistical signifi-
cance of the bias we performed one-sample, two-tailed t tests. With the null hypothesis25

that the sample was unbiased (b = 0) with a significance level of 0.05. Weighted statis-
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tics were calculated setting weights to the reciprocal of the estimated MH uncertainty
variance (c.f. Sec. 2.2.2).

3 Results

3.1 Evaluation of mixing heights

3.1.1 Comparison of WRF MHs to IGRA RS5

Fig. 4 shows the comparison of MH estimated from IGRA profiles for day and nighttime
and both WRF simulations. Daytime WRF MHs are in general lower than observed.
Most nighttime MHs are below 500 m although there are quite a number of MH above
that threshold, which is reasonably captured by both WRF simulations. However, all of
the plots exhibit large scatter, especially during daytime. Correspondingly the explained10

variability is rather low at day with ∼30 % for both PBL schemes compared to nighttime
with over 50 %. Unlike the simulations, IGRA diagnosed MH seem to detect surface
based inversion layers fairly often, which leads to MH detection at the first upper air
level (17 m). Taking MH uncertainty (Eq. 2) as weights for the linear regression into ac-
count seems to downweight some of these rather low IGRA MHs, which is likely caused15

by the poor vertical resolution of IGRA RS that affects especially the nighttime (Seidel
et al., 2012). The weighting results in improved correlation coefficients by ∼10 %.

Table 2 summarizes some statistics computed from the comparison taking the MH
uncertainty into account. In general all simulations exhibit significant bias and substan-
tial random error especially at night. As could be expected YSU produces the best cor-20

respondence to IGRA MHs at day, with bias ∼10 %, albeit random errors of 40 % occur.
MYJ exhibits greater daytime bias of ∼20 %, which is expected to bias the simulation
of vertical tracer diffusion notably. At night YSU has a large bias of 60 % while MYJ
exhibits a bias of only 40 %. Random errors for both PBL schemes approach 100 % at
night. These numbers confirm the large model uncertainty in MH during nighttime, thus25
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we expect a corresponding transport model error, which will lead to too much or too
few accumulation of tracer mass in the SBL, respectively. Thus, the use of optimized
MH should have most potential for improvement in stable/wind shear driven conditions.
The observed mismatch in MHs are comparable to the findings of Gerbig et al. (2008).
They compared radiosonde based MHs to ECMWF analysed meteorology (∼35 km2

5

resolution).

3.1.2 Evaluation of MH optimization

We assessed the skill of the KED optimization by cross-validation, such that each of the
6722 IGRA samples was temporarily excluded from the data set and then estimated
with the remaining data. Table 2 shows the results of the cross-validation, which was10

executed with and without taking MH uncertainty into account to test the validity of the
assumptions stated in Sec. 2.2.1. A small but significant bias on the order of a few
percent remains for some simulations, which decreases when taking MH uncertainty
into account. Random errors slightly decrease during day, but are reduced notably
when considering MH uncertainty. The correlation values stay at the level before the15

optimization with rather low values for the case neglecting MH uncertainty. The KED
errors were reasonably estimated, from a normal distribution we would expect 68 % of
the observed MH to lie within one standard deviation and 95 % within the confidence
interval of the KED estimate. This result suggests the possibility to propagate these
uncertainties through a CO2 inversion as discussed in Sec. 4.3. Figure 5 shows an20

example highlighting the differences in innovation when MH uncertainty is taken into
account, which also leads to alterations in the spatial distribution of KED errors.

We compared estimated MHs to 73 UKMO RS profiles (32 day, 41 night) from the
stations Castor Bay and Albemarle (shown in Fig. 1). Castor Bay was typically 380 km
and Albemarle 230 km away from the next IGRA station. The result were comparable25

to the cross-validation (not shown). In general daytime MHs are less affected by the
MH optimization while large reduction in bias and random errors occurred at night,
together with substantial increases in correlation. In contrast to the cross-validation, we
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observed KED variances that are usually too conservative with> 80 % in one standard
deviation of KED error, which might be due to the small sample sizes.

3.2 Comparison to IMECC campaign data

3.2.1 Effective CO2 mixing height

In order to test if the KED MHs are consistent with the actual vertical mixing of CO2, we5

estimated an effective MH from IMECC vertical profiles. We define MHs to be consis-
tent if they are within one standard deviation of the KED error. However, there is no well
established method known to us to objectively diagnose effective MHs from CO2 pro-
files. Here we followed a visual approach. First, we selected profiles which have a good
vertical CO2 data coverage in the lower parts of the PBL. We omitted profiles where10

data in the PBL is sparse or missing, such that in the remaining profiles gradients from
vertical mixing are visible. The analysis of profiles obtained during stable conditions,
i.e. mainly nightime and early morning was hampered by poor data coverage and by
the fact that the relationship between the CO2 profile and the Richardson number is
not well understood. During these stable conditions we often observed the absence of15

mixing, caused by strong temperature inversions and low friction velocities. The defini-
tion of a MH is difficult in such situations (Seibert et al., 2000) and CO2 concentrations
show large gradients in the lowest ∼500 m. Therefore we decided to analyse profiles
that have been taken likely in well mixed conditions. The profiles that were used for the
analyis are shown in Fig. 6. During well mixed conditions the profiles of CO2 concen-20

trations are constant with height within the mixed layer, and exhibit a gradual change to
free tropospheric values above. Thus, we plotted the CO2 gradients as a function of al-
titude and than selected the height above the surface layer where the gradient from ML
to free troposphere was observed as the effective MH. This visual approach requires
that turbulence in the entrainment zone causes well distinguishable gradients in CO225

that can be detected. Thus a larger uncertainty is expected for cases when mixing layer
and free troposphere (or residual layer) have nearly the same concentration. As indi-
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cated in Figures 6 optimized MHs are in most cases consistent with the effective MH.
This result holds for both PBL schemes. WRF generally reproduces the observed po-
tential temperature profiles well and accordingly the optimized MH has a minor impact
at day, except one instance at Hohn, 2 October 2009, 12:17 UTC when the WRF MH is
200–300 m too high. This error is significantly reduced in the optimized MHs. Another5

instance at Hohn, 9 October 2009, 11:34 UTC shows a well mixed layer of CO2 up to
only ∼600 m, while the simulations show much larger mixing heights. Here MYJ had
a better agreement with the observed CO2 profile, but the MH optimization caused an
increase of the MH. Such large deviations are an indication of low correlation between
WRF background and conditioning data from IGRA RS. Here the effective MH is not10

within one standard deviation of the KED error, but well within the confidence interval.

3.2.2 Simulated CO2 profiles

Here we focus on the STILT simulated CO2 profiles during the IMECC campaign
(Fig. 6). During well mixed conditions both STILT simulations are able to reproduce
the observed CO2 profile reasonably, but tend to be ∼1 ppm too high in the mixing15

layer. Because differences in initial and optimized MHs were small, the impact on CO2
simulations was limited, but usually the mean CO2 concentration in the mixing layer is
corrected towards the observations. A notable example is the profile at Hohn, 2 Octo-
ber 2009, where the CO2 concentration was adjusted by about 0.5 ppm, but a 1 ppm
model-data mismatch in CO2 remains. The profile near Gdańsk, 30 September 2009,20

10:37 UTC shows a large model mismatch in CO2 concentrations throughout the mixed
and residual layer. The effect of optimization in the residual layer was in general negli-
gible.

3.3 Comparison to ground measurements

While the IMECC profiles give a good vertical coverage, they provide only snapshots.25

Thus the continuous observations from Cabauw and Heidelberg are useful to better
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understand the impact of MHs on CO2 time series shown in Fig. 7. The average diurnal
cycle of KED estimated MH are shown in Fig. 8. Table 3 gives an overview of the
statistics.

3.3.1 Cabauw

Figure 7a and b shows the complete CBW time series at the 20 m level, which is5

mostly affected by the MH during day and night. The CO2 signal at CBW shows a pro-
nounced amplitude of 30 ppm on average, caused by the accumulation of respiration
and nearby anthropogenic sources during night. The diurnal and synoptic variability
in the time series is well represented in all simulations with r2 typically between 0.5
and 0.7. These values generally improve by ∼3–6 % when using optimized MHs (c.f.10

Tab. 3). Large negative biases were produced at night of −9 to −10 ppm, when the op-
timization of MHs is most effective reducing biases from −56 % to −18 % (STILT/MYJ)
and from −62 % to −6 % (STILT/YSU; c.f. Tab. 3), which was expected from the MH
cross-validation results. There are positive biases at day of 1.17 ppm (STILT/YSU) and
1.45 ppm (STILT/MYJ) about 9 and 7 % of the regional signal, i.e. here the bias re-15

duction due to MH optimization is at 29–44 %. The overall size of the errors are com-
parable to previous simulation results (e.g. Broquet et al., 2011). Note that we used
prior fluxes for the regional simulations, which were not optimized against observa-
tions of CO2 through inversions. The random errors increase during events when us-
ing optimized MH fields, e.g., 7 to 9 September or 25 to 28 September (Fig. 7a and20

b). The events are characterized by especially large random errors and model–model
differences. The error is most obvious in the STILT/YSU simulation, which is further
discussed in Sec. 4. At the highest inlet (200 m) the signal amplitude is on average
a factor 6 smaller (not shown), and model bias and random errors were below 5 ppm
respectively with r2 ∼ 0.5. At this altitude the overall bias of the STILT/MYJ reduced by25

1 ppm due to optimized MHs, while STILT/YSU was not affected. Nighttime improve-
ment,.i.e. reduction in bias and random error, is less notable than at the 20 m inlet,
because the receptor is located below the MH. In general, CO2 biases between PBL
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schemes were in line with our MH comparison (c.f. Sec. 3.1.1 and Tab. 2), i.e. better
results of STILT/YSU at day and worse at night than STILT/MYJ (Tab. 3). The general
reduction in model-data mismatch indicates the effectiveness of the MH optimization.
Remaining CO2 mismatches are of comparable size for both PBL schemes, this is to
be expected when estimated MHs converge (Fig. 8).5

3.3.2 Heidelberg

Similar to CBW, the HEI CO2 time series shows a pronounced daily amplitude at the
ca. 30 m inlet height of about 30 ppm on average (Fig. 7c and d). Correlation between
CO2 observations and all simulations were generally good r2 > 0.5. All simulations
produced too low concentration at day and especially night with biases of ∼6 ppm. The10

phasing of the mean diurnal cycle exhibits notable mismatch in all simulations, the MH
optimization can not resolve this issue, probably due to the low temporal resolution of
the conditioning data (Sec. 2.2). Nevertheless, the usage of optimized MHs reduces
the overall bias by 40–50 % (Tab. 3 and Fig. 7c and d). We observed again most no-
table reduction of nighttime bias, especially in the early morning. The effect of MH15

optimization on correlations and random errors was mixed (Tab. 3). Similar to CBW
slight deterioration is observed at the event with increased errors and model–model
differences centred around 10 October 2009 (Fig. 7c and d), albeit less obvious.

4 Discussion

The KED estimation was most effective to remove biases from WRF MHs. In addi-20

tion, KED MHs were found to be mostly consistent with actual CO2 mixing. This is also
supported by the general favourable effect of optimized MHs on CO2 transport, as aver-
aged diurnal cycles were notably better captured. However, substantial deviations from
observed CO2 signals remained. Model-data mismatch in CO2 concentrations can be
caused by other factors that need to be considered, namely (1) errors in CO2 fluxes and25
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(2) remaining transport related model errors, which includes horizontal advection and
imperfect MH optimization. (1) is likely since we used non optimized (a priori) fluxes,
thus a perfect match to observed CO2 cannot be expected. This could to some extend
even lead to a shift in phasing such as observed at HEI. (2) is also possible, as we have
shown that significant bias and errors remain in MHs (Tab. 2). While Kretschmer et al.5

(2013) showed that an increased number of MH data to condition the KED optimiza-
tion will eventually lead to further improvement, the observed deterioration of nighttime
RMSE especially at Cabauw can be caused by any of the mentioned factors. The fol-
lowing discussion focuses on CBW, because prominent RMSE features were observed
there and additional meteorological observations were available, which were needed10

for the purpose of analysis.

4.1 Uncertainty in fluxes

Errors in CO2 fluxes are an obvious reason for CO2 model-data mismatch. Thus we
need to evaluate the ability of our modelling system to adequately reproduce biospheric
and anthropogenic flux components at CBW.15

4.1.1 Uncertainty of VPRM parameters

Ahmadov et al. (2007) have shown the general ability of VPRM to calculate realistic
fluxes in the European domain. However, we evaluated radiation and surface tem-
perature, the two main WRF parameters that drive VPRM, to hourly measurements
at CBW. Radiation was found to deviate by 50 % for some days, but was unbiased.20

Surface temperature was simulated well, but revealed a 1◦ K bias in the evening with
higher temperatures in the YSU PBL, likely caused by a too deep mixing layer that does
not cool down as fast as a shallow mixing layer. Considering characteristic VPRM pa-
rameters relevant for the site α = 0.088µmolem−2 s−1K−1 and β = 0.58µmolem−2 s−1,
a change in temperature from 13 to 14 ◦C increases the respiration only slightly from25

1.72 to 1.81 µmolem−2 s−1. This effect seems negligible compared to the large over-
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estimation of nocturnal CO2 build up. Other sources of uncertainty are the scaling of
VPRM parameters from point to region and prior uncertainty, e.g. from VPRM in com-
parison to eddy flux residuals and the uncertainty of fitting VPRM parameters to eddy
co-variance data. The significant temporal variation of the peat/on clay and clay/on peat
emissions depending on the soil moisture content are not captured by the alpha and5

beta parameters, but these emissions could have a notable impact on CO2 emissions
at CBW (Vermeulen et al., 2011). A detailed analysis of these factors is not trivial and
out of scope for the present study. For a discussion the reader is referred to the work
of Mahadevan et al. (2008) and Ahmadov et al. (2007).

4.1.2 Uncertainty of regional signals10

Because the general correspondence with the observations is high, we gain confidence
that we can use the model to disentangle the CO2 signal into its individual components.
Figure 9 shows simulated GEE, respiration and fossil fuels signals at CBW. The differ-
ences between these components point at strong sources of CO2 in that part of the
domain, as expected. Two events with specifically large amplitudes in the fossil fuel15

signal (henceforth referred to as period 1 and 2, marked grey in Fig. 9), correspond to
notable deterioration in the KED simulations, which might be caused by overestimated
fossil fuel fluxes. To test the relative impact of the regional fossil fuel signal (CO2,ff)
on STILT with optimized MH during these periods, we isolated the signal from regional
biosphere-atmosphere fluxes (∆CO2,veg) from measured CO2 concentration (CO2,meas)20

as in Gerbig et al. (2003b) using observed and STILT simulated CO signals:

∆CO2,veg = CO2,meas −∆CO2,ff −CO2,bg (9)

Here CO2,bg is the contribution from the background concentration advected to the re-
ceptor, which is simulated by STILT. The regional fossil fuel signal is then approximated25
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by:

∆CO2,ff = (COmeas −CObg)
∆CO2,ff,mod

∆COff,mod
(10)

The ratio on the right-hand side of Eq. (10) relates regional CO2 and CO signals as sim-
ulated by STILT. Similarly, the advected background signal CObg was again obtained5

from STILT, which uses MACC reanalysis and accounts for chemical production/loss
during transport from the lateral boundary to the receptor. COmeas is the measured CO
signal at CBW.

Fig. 10 shows the resulting estimates for the signal from regional NEE fluxes using
each of the four simulations of our experiment. The KED simulations exhibit slightly re-10

duced random errors and absolute bias changes relative to the simulations with unop-
timized MHs from> 1 ppm to < 0.5 ppm. Period 1 shows less deterioration, thus fossil
fuel emission might indeed be overestimated. However, especially the YSU simulation
remains deteriorated. The MYJ-YSU differences during these periods and the general
low amplitude of the models in the second period (Fig. 10) point to transport related15

uncertainties, which is discussed below.
We observed a notable model mismatch of the CO2 diurnal cycle at HEI (c.f.

Sec. 3.3.2). This effect could be the result of a wrong diurnal cycle in the used EDGAR
fossil fuel emission inventory. Here we used the observed CO2 vegetation signal that
was estimated with Eq. (9) to compare the phase of the mean diurnal cycle to the sim-20

ulations (not shown). We found a similar shift in the phasing of the diurnal cycle of the
vegetation signal. This indicates that a potential error in the temporal variability of the
EDGAR emissions can not fully explain the mismatch in the diurnal cycle. We rather
need to consider transport related causes for these mismatches, which is discussed in
Sect. 4.2.25
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4.1.3 Uncertainty in CO emissions

We also compared simulated CO directly to observations for indications of overesti-
mated fossil fuel emissions shown in Fig. 11. Even before optimizing MHs, CO was
close to observed levels and even higher in period 2, although nighttime MHs were
likely too high in both PBL model setups. This is another indication that fossil fuel emis-5

sions might be overestimated. Especially in the Netherlands substantial uncertainties
in fossil fuel inventories were shown by Peylin et al. (2011). However, error in fossil
fuel signal can also be caused by mismatches in transport, which could lead to the
advection of CO2 from relatively strong fossil fuel emission sources. Such potential
uncertainty in transport is discussed in the following section.10

4.2 Uncertainty in transport

There are striking differences between the two PBL schemes. Because both
STILT/MYJ and STILT/YSU use the same input fluxes, any CO2 deviations between the
tweo sets of modelling results have to be transport related. Thus, after optimizing the
MH, we expect model differences in CO2 to become smaller. Table 4 shows a compar-15

ison of actual model to model differences at CBW. While differences im MHs are well
reduced when using MH optimization, an increase in model divergence of simulated
CO2 can be observed especially at nighttime which is contrary to our expectations. To
understand the reasons for this behaviour we studied cases where model–model differ-
ences are most obvious. We find most striking differences during the events in period20

1 and 2 (marked in Fig. 9). Figure 12 shows a comparison of STILT and observed wind
speeds at CBW. Windspeed is about a factor 3 higher in period 1 and this is well cap-
tured by all simulations. Because of the higher transport speeds the footprints capture
a larger source area in the last 12 h before arrival at CBW. Good correspondence was
found between modelled and measured local wind direction (not shown). Since CO225

surface influence is more local in period 2, we expect a greater impact of the MH on the
CO2 signal. Similar to Vogelezang and Holtslag (1996) we estimated MHs at CBW from
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observed meteorology (Eq. 1). The data coverage is almost complete in the full period
of interest, but only MH below 200 m can be detected. During period 1 CBW MHs
were on average 100 m, in contrast, KED estimated average MHs of 50 m. Contrarily,
during period 2 KED and CBW observations agree on average MHs of 50 m, which
could explain the little effect of the MH optimization in CO2. On the one hand a local5

surface influence and correct simulated MHs suggest overestimated CO2 emissions.
On the other hand the CBW site is surrounded by strong point sources, e.g. Amster-
dam, Utrecht, Rotterdam, thus even minor mismatch in horizontal advection might have
a large impact on CO2 concentrations.

Obviously, KED MHs are too low in period 1. To test the impact of the local MH on10

CO2, we used the CBW MHs as additional conditioning data for the KED prediction.
The resulting CO2 time series for period 1 and 2 is shown in Fig. 13. The problem of
deterioration is largely reduced in period 1, while period 2 is nearly unaffected, which
could be expected from the MH comparison. However, a notable overestimation of CO2
remains during two nights within period 1.15

Overestimation was found to be stronger in STILT/YSU, and to find causes for this ef-
fect we studied cases where these model differences were most obvious. At 7 Septem-
ber, 00:00 UTC in period 1, STILT/YSU shows a large peak in fossil fuel CO2, which
is not seen as strong in MYJ (Fig. 9). Figure 14a shows south westerly footprints in
the 12 h before arrival at CBW. The STILT/MYJ footprint covers about twice the area,20

i.e. particles travel faster. Thus, STILT/YSU influence is more local and at the same
time MHs are at 50 m while MYJ KED MHs are quickly above 100 m. In contrast, 28
September is an instance during period 2 where STILT/MYJ shows a stronger peak
in CO2 than STILT/YSU (Fig. 14b). Here the MHs are at about 50 m in the last 3 h
before particles arrive at CBW in both simulations, which was found to be in line with25

CBW MHs. The horizontal advection was notably different in both simulations, which
caused STILT/MYJ to capture emissions from the Rotterdam area when surface in-
fluence was still above 0.5 ppmµmole−1 m−2 s−1, while STILT/YSU just missed these
emissions. From these examples it is clear that uncertainty in simulated horizontal
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winds needs to be considered, for example using a method as introduced by Lin and
Gerbig (2005).

4.3 Potential of MH optimization for regional CO2 inversions

The critical advantage of geostatistical methods like KED lies in the provided esti-
mation errors, which are a combination of the uncertainty related to spatio-temporal5

interpolation and uncertainty of estimating the MH from RS data. These errors can
be propagated to CO2 fluxes estimated from the transport inversion as suggested by
Gerbig et al. (2008), providing improved and more reliable inversion results. In this ap-
proach the MH error variance from KED is added as additional term in the stochastic
calculation of each particle trajectory. Two STILT runs, one with and one without the10

additional stochastic process, yield ensembles of particle trajectories that provide two
distributions of CO2 mixing ratios with differing variances, and the differences in these
variances provide an estimate of MH induced CO2 uncertainty. The additional CO2
uncertainty variance is then added to the diagonal elements of the error covariance
matrix. However, this method requires that the transport model has an unbiased repre-15

sentation of vertical mixing. Our results indicate that the systematic error in simulated
CO2 due to errors MHs were largely reduced by the MH optimization for night time
observations, and at least slightly reduced for daytime observations. Thus it can be
expected that the proposed method has potential to yield more reliable results when
applied for inverse estimation of surface–atmosphere exchange fluxes. However, sub-20

stantial problems are associated with the spatial and temporal undersampling of the
RS data (Kretschmer et al., 2013). The fact that including CBW MH measured at the
tower yielded better results in simulated nighttime CO2 clearly indicates the potential
for using MH data based on observations made in close proximity to the CO2 mea-
surement site. In contrast the HEI comparisons showed large biases caused by a shift25

in the diurnal phasing, which can only be resolved by adding MH observations in the
hours between 00:00 and 12:00 UTC, e.g. from continuous retrievals of the MH.
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4.4 Outlook

4.4.1 Additional MH data

The IGRA data set is limited especially in the temporal resolution. The KED estimation
error is a tool that can help to guide the installation of future instrumentation. A partic-
ularly promising data set can be obtained from lidars or ceilometers, that are able to5

continuously observe aersosol backscatter signals, from which MH can be retrieved at
relatively low cost (Eresmaa et al., 2006). Networks of lidars and ceilometers are al-
ready operated throughout Europe (Haeffelin et al., 2012). Within the Integrated Carbon
Observation System (ICOS3) project a network of atmospheric measurement stations
is build for which MH measurements are mandatory for level 1 continental stations. In10

addition, Jordan et al. (2010) demonstrated the retrieval of the PBL heights from satel-
lite based lidar data. A challenging task for the future will be to assure the consistency
of effective tracer mixing and these different MH estimation methods. Future research
also aim at quantification of the uncertainty of these different kinds of MH observations,
we have shown the substantial impact of these uncertainties on KED estimates.15

4.4.2 Improvements of MH estimation

The chosen KED approach is quite simplistic in terms of the underlying product-sum
covariance model which assumes space-time stationarity. This assumption is likely to
be violated by processes like PBL mixing as the temporal partial ranges of the vari-
ogram model are likely changing during day/night transition times. Non stationary co-20

variance models exist, but their application to the special problem of PBL mixing is
non-trivial and an improvement in predictions skill is not guaranteed (Paciorek and
Schervish, 2006). In addition, such methods require the analysis of temporal correlation
length scales from continuous MH observations, e.g. from ceilometers. Nevertheless,
we believe such an analysis would be worth future research.25

3www.icos-infrastructure.eu
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We found indications of overestimation in the KED variances, which could be caused
by biases in the semivariance model due to MH uncertainty. Methods exist that allow to
account for such biases in the estimation of the co-variance model (e.g. Christensen,
2011). However, MH uncertainty itself is a function of the PBL mixing process, e.g.
day/night difference of error magnitude. In such a situation the bias correction of the5

variogram model may be flawed, which similarly can cause biased estimates. The use
of variance-stabilizing transformations are suggested to circumvent such complications
(Christensen, 2011). Additional research in this direction could lead to improved esti-
mation of uncertainty, which in turn may have a positive impact on inversion results.

5 Conclusions10

We evaluated a method to interpolate MH estimated from data of the IGRA database
using the KED approach. The impact of the resulting optimized MHs on regional tracer
transport was assessed by comparing two STILT simulations with different kinds of
WRF PBL parametrizations (MYJ and YSU) to observations.

Referring to the questions posed in the introduction we summarize and conclude:15

1. Significant biases in CO2 at CBW, where the diurnal evolution of CO2 was cap-
tured well, were approximately 7–9 % (day) and 60 % (night) of the regional signal.
The use of optimized MH data yielded bias reductions of 29–44 % (day) and 68–
90 % (night), respectively. While bias reduction at HEI was similarly effective at
night, daytime biases remained due to errors in phasing of the CO2 signal. The20

effect on random errors and r2 was mixed. At CBW RMSE was even increased
by using optimized fields. The reasons this effect are likely related to the sensi-
tivity on the external drift and errors in horizontal advection. In addition, we found
indications of overestimated fossil fuel emissions.
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2. Simulated MHs were significantly biased with values of −20 % (MYJ) to 10 %
(YSU) at day and 40–60 % at night, respectively. RMSE was on the order of 90–
116 % with larger values for the YSU scheme.

Because of these results, we conclude that mismatches in MHs lead to significant
bias and random error in tracer concentrations. Therefore, biased flux estimates5

due to mismatches in simulated MHs have to be expected, when using compara-
ble high-resolution transport models in regional-inversions.

3. We conclude that the IGRA data set generally provided enough conditioning data
to estimate nearly unbiased MH fields. Biases were reduced from up to 77 % to
below 10 % in the cross-validation. RMSE was reduced by up to 30 %, r2 was10

unaffected at ∼40–60 %. However, comparison at CBW showed a sensitivity of
the estimation to the WRF model in terms of differences in advection and the
MHs used as external drift. The latter effect could be mitigated by using additional
nighttime MHs observed at CBW. Additionally, we found that models could not
reproduce the phasing of the CO2 diurnal cycle at HEI, which is likely the result15

of improper modelling of the timing of MH development. Due to temporal gaps in
the conditioning observation data, the MH optimization was unable to resolve this
problem.

4. KED MH estimates were in general consistent with effective CO2 mixing as de-
rived from observed CO2 profiles of the IMECC aircraft. The CO2 MH was usually20

within one standard deviation of the KED error. This finding indicates that the KED
variance is an adequate measure to quantify MHs uncertainty.

The effect of MH optimization were generally favourable and the method provides error
estimates that can be propagated through a CO2 inversion to obtain reliable posterior
fluxes (Gerbig et al., 2008). Thus we recommend the consideration of the proposed25

MH optimization for future regional inversions. Especially the effective removal of night-
time bias could potentially allow for the use of nighttime GHG observations. These are
currently neglected by inversions, due to large transport model errors. However, these
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observations could provide important information to constrain flux estimates, especially
to gain further insight spatio-temporal variability of anthropogenic fossil fuel CO2 emis-
sions on regional scales.
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Table 1. Setup of WRF options.

Option Setting

Model code version 3.0.1.1

Time step integration 1 min, 3rd order Runge–Kutta, output intervall 1 h
Grid definition 280×400 (North–South x West–East), 10 km spacing,

Arakawa C
Vertical coordinates 41 levels (20 below 2 km), terrain following, eta coordinates,

pressure top 50 hPa

Basic equations Non-hydrostatic, compressible
Microphysics WRF single moment class 5
Atmospheric radiation Rapid Radiative Transfer Model (RRTM, long wave),

Mesoscale Model 5 (MM5, Dudhia, short wave)
Cumulus parameterization Grell–Dévéni
Land-Surface Model (LSM) Noah LSM, 4 soil layers

PBL scheme Yonsei University (YSU setting), Mellor–Yamada–Janjic (MYJ
setting)

Surface layer scheme Monin–Obukhov similarity (YSU setting), Monin–Obukhov
(Janjic Eta, MYJ setting)
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Table 2. Results of the comparison of WRF and IGRA RS derived MHs based on Eq. (1, upper
part) and cross-validation results (lower part) for day (12:00 UTC) and night (00:00 UTC). Re-
sults are shown for both PBL parametrizations: MYJ and YSU. The values in the tables denote
the results without and with considering the MH uncertainty shown in the format: without/with
MH uncertainty considered. The MH uncertainty was derived as described in Sec. 2.2.1. Bias
and random error were normalized by the mean observed IGRA derived MH (columns %
Bias, % RMSE). When taking MH uncertainty into account the normalization was done with
a weighted mean. Column % SD refers to the number of observations within one standard
deviation of the KED estimate and % CI to the observations within the 95.42 % confidence
interval.

Comparison of WRF MH to IGRA derived MH

Simulation Time Bias % Bias RMSE % RMSE r2 % in SD % in CI
MYJ day −144/−219 −14/−20 543/519 52/42 0.32/0.41 NA NA
YSU day −36/−116 3/10 535/487 51/42 0.30/0.41 NA NA
MYJ night 108/89 54/40 235/222 116/92 0.56/0.61 NA NA
YSU night 156/135 77/61 277/259 137/116 0.54/0.61 NA NA

cross-validation results of KED derived MH

Simulation Time Bias % Bias RMSE % RMSE r2 % in SD % in CI
MYJ day 5/35 0/3 521/458 50/40 0.31/0.42 69/69 92/91
YSU day 7/42 1/4 518/447 50/39 0.32/0.45 73/74 95/94
MYJ night 4/13 2/5 195/196 96/85 0.57/0.62 78/78 93/93
YSU night 5/15 2/6 192/195 94/84 0.59/0.63 81/80 95/95
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Table 3. Results of STILT-data CO2 comparison at Cabauw (upper half) and Heidelberg (lower
half), considering STILT/MYJ and STILT/YSU simulations (rows: MYJ, YSU). Also shown are
the statistics of the STILT simulations using KED optimized MHs (rows: MYJ KED, YSU KED).
Bias and RMSE was normalized with the observed CO2 subtracting STILT simulated back-
ground concentrations (columns % Bias and % RMSE). Day denotes hours 10:00–12:00 UTC
and night 20:00–04:00 UTC.

CO2 Cabauw, 20 m

Simulation Time Bias % Bias RMSE % RMSE r2

MYJ day 1.45 9 4.95 31 0.64
MYJ KED day 0.84 5 4.60 29 0.69

YSU day 1.17 7 4.81 30 0.66
YSU KED day 0.83 5 4.58 28 0.69

MYJ night −8.96 −56 16.34 101 0.53
MYJ KED night −2.95 −18 17.45 108 0.59

YSU night −9.96 −62 17.77 110 0.42
YSU KED night −1.02 −6 22.4 139 0.42

CO2 Heidelberg, 30 m

Simulation Time Bias % Bias RMSE % RMSE r2

MYJ day −1.89 −10 4.38 23 0.75
MYJ KED day −1.87 −10 4.57 24 0.70

YSU day −1.68 −9 5.08 27 0.6
YSU KED day −1.31 −7 4.57 24 0.67

MYJ night −6.91 −36 11.84 62 0.58
MYJ KED night −2.54 −13 11.67 61 0.51

YSU night −7.04 −37 12.32 65 0.53
YSU KED night −1.53 −8 11.12 58 0.53
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Table 4. Comparison of CO2 and MH model to model differences shown for Cabauw. The dif-
ferences were calculated by subtracting the simulations using YSU PBL scheme from the ones
using MYJ PBL scheme for each experiment, i.e. with and without MH optimization respectively.
Day denotes hours 10:00–12:00 UTC and night 20:00–04:00 UTC.

MH Optimization Time CO2 Bias (ppm) CO2 RMSE (ppm) CO2 r2 MH Bias (m) MH RMSE (m) MH r2

off day 0.27 2.42 0.86 −116.56 189.96 0.74
on day −0.06 2.18 0.86 5.45 122.09 0.84
off night 2.16 17.77 0.5 −90.79 178.94 0.85
on night −0.92 26.29 0.46 −14.04 105.14 0.88
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Fig. 1. Maps of the simulation domain. The left map shows flight tracks of the IMECC cam-
paign. Coloured lines indicated individual flights. Black squares mark locations of profiles from
start/landing of the aircraft or spiral flights. Heidelberg (HEI) and Cabauw (CBW) ground mea-
surement stations are also shown (red diamonds). The right map shows the positions of ra-
diosonde launch sites (coloured circles). Circle colours indicate the number of radio soundings
available in the period 24 August 2009 to 10 October 2009. Station abbreviations are shown
for the additional sites: Baden-Baden (BAD), Bremen (BRE), Garmisch-Partenkirchen (GAR),
Gdańzk (DAN), Jena (JEN), Oberpfaffenhofen (OHO), Poznań (POS), Traînou (TRA).
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Fig. 2. Uncertainty of the calculated MH with height (a.g.l.) shown in 100 m bins for daytime (a)
and nighttime (b). The uncertainties were estimated using Eq. (2). All available IGRA obser-
vations were used for the calculations. Daytime values are shown starting from 100 m (a.g.l.).
Boxes denote the central 50 % of the data, whiskers are at ±1.5 times the inter quantile range
and outliers are not shown. Black line within boxes indicate the median value.
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Fig. 3. Spatial (a, b) and temporal (c, d) sample variograms as calculated with Eq. (7) for day
and night separately. Spatial sample variograms were calculated from model/observation linear
regression residuals for each WRF setup using MYJ (grey pluses) and YSU (grey triangles)
PBL scheme. The time variograms were calculated from WRF MHs subtracting a diurnal trend
(c, d), notable differences between PBL setups were found, thus we fitted separate variogram
models for each PBL scheme (c, d). KED was setup to use 25 neighbours in space and 3 in
time, i.e. 75 observations were used to predict each of the the 141.12×106 grid cells of one
WRF simulation. The maximal distance between any pair of observations were typically below
2500 km in space and 48 h in time because of the 12 h temporal resolution of the conditioning
data. The variogram models were fitted to cover these ranges. A temporal trend is observed at
synoptic scales beyond 50 h, which does not affect the fitted variogram models (c, d).
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Fig. 4. Comparison of WRF and IGRA derived MHs using the Ri -method. We used about 6700
samples almost evenly distributed among day and night (00:00 and 12:00 UTC). The left column
(a, c) shows 12:00 UTC and the right column 00:00 UTC data. The function of a weighted linear
regression model together with the resulting r2 is shown in the upper left corner of each plot
(dashed grey line). The weights were set to the reciprocal of the MH estimation uncertainty.
The regression function neglecting this uncertainty is indicated as solid grey line. The squared
correlation coefficients for the latter are shown in Table 2.

4674



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

  

September 9
12 UTC

YSU PBL

w/o uncertainty w/ uncertainty

(km)

(km)

(km2)

a)

b)

c)

d)

M
H

: E
st

im
at

ed
-W

R
F

(in
no

va
tio

n)
E

st
im

at
io

n 
er

ro
r

(K
E

D
 v

ar
ia

nc
e)

W
R

F
 M

H
(b

ac
kg

ro
un

d)
M

H
 e

st
im

at
ed

(b
y 

K
E

D
)

Fig. 5. Example of the KED estimation. Shown are the MHs produced by the WRF YSU simula-
tion (a) for each 10×10 km2 pixel of the simulation domain on the 9 September 2009, 12:00 UTC
used as external drift (background field) in the KED estimation. The maps in (b, c, d) (left col-
umn) show estimation results neglecting uncertainty of observed MH in the KED estimation
and the right column the results when accounting for this uncertainty. The KED optimized MHs
are shown in row (b). The innovation for each pixel is computed as the difference of optimized
MH and background field (row c). Also shown in row (d) is the resulting KED error variance.
Less error variance is observed near the locations of radiosondes.
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Fig. 6. Caption on next page.
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Fig. 6. Measured and simulated IMECC profiles measured in daytime with enhanced mixing.
The left column shows observed (black dots) and WRF simulated potential temperature. Shown
are both WRF simulations using the YSU PBL (orange dash dotted lines) and the MYJ PBL
(blue dashed lines) parametrization schemes. The statistics in the temperature plots indicate
the location and time of the profile. Site abbreviations correspond to the red squares in map in
Fig. 1. Also shown are the minimum and average distance to the next IGRA radiosonde used
for optimization. The comparisons of STILT simulated and observed CO2 profiles are shown
in the middle and right columns. A new STILT receptor was defined every 10 km horizontal or
every 100 m altitude change of the airplane. Horizontal lines indicate MHs. Observed MHs were
derived by analysing gradients in the CO2 profile (see text for details, black lines). STILT MHs
are averages from all receptors of a given profile. STILT CO2 profiles are shown with (orange
crosses) and without optimized MHs (blue trangles). One standard deviation of the KED error
is shown as orange dotted bar in the right of each plot. Thick vertical lines from the surface
(0 ma.g.l.) to each MH correspond to mixing layer averaged CO2 (blue and orange lines).
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Fig. 7. CO2 time series observed at Cabauw 20 m a.g.l. (a, b) and Heidelberg 30 m a.g.l. (c, d,
black lines). STILT simulations are shown with (orange dash dotted lines) and without optimized
MHs (blue dashed lines). Inlets in the upper right corner of each plot show the averaged diurnal
cycle. In the upper left corner of each plot are summary statistics calculated for the full times
series of the CO2 mismatch: STILT-observations together with STILT/observation squared cor-
relation coefficient (r2). Data shown are 3 h averages. Dates on the x-axis refer to the analysis
year 2009.
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b) Heidelberg

Fig. 8. Comparison of averaged diurnal cycles of WRF derived (black dots, red triangles) and
optimized MHs (green pluses, blue crosses) at Cabauw (a) and Heidelberg (b). The KED op-
timization was done with the MYJ and YSU PBL scheme and using the MH observations.
Average difference of MHs between the PBL schemes is minimized by the optimization as both
converge to the conditioning data. Note that there is no MH observation co-located with CBW
or HEI.
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Fig. 9. Simulated CO2 tracers for the vegetation signal Gross Ecosystem Exchange (GEE, black
line), respiration (RESP, blue dashed line) and the fossil fuel tracer (FF, orange dash dotted line)
at Cabauw 20 m (a.g.l.) from the MYJ KED STILT simulation (a) and the YSU KED simulation
(b). The grey areas indicate the occurrence of two events characterized by comparably large
model errors, period 1 7 to 9 September 2009 and period 2 25 to 28 September 2009. Airflow
in both periods is qualitatively different, resulting in a strong vegetation signal in period 1 while
in period 2 the FF signal dominates. In these periods quantitative model–model differences are
notable although the same surface fluxes were used.
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● observed vegetation signal
MYJ, bias/RMSE/corr.: −1.03 / 5.01 / 0.13
KED, bias/RMSE/corr.:   0.16 / 4.9 / 0.17

a) STILT/MYJ, period 1
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b) STILT/MYJ, period 2
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● observed vegetation signal
YSU, bias/RMSE/corr.: −1.41 / 4.93 / 0.21
KED, bias/RMSE/corr.:   0.4 / 4.91 / 0.18

c) STILT/YSU, period 1

●
●

●

●

●
●●●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●●●●

●
●●●

●

●

−
40

−
20

0
20

40
60

80

time (month/day)

C
O

2 
m

ix
in

g 
ra

tio
 (

pp
m

)

●

●●

●

●
●

●●
●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●●●●

●
●
●●

●

●

●
●

●

●

●
●●●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●●●●

●
●●●

●

●

09/25 09/26 09/27 09/28

d) STILT/YSU, period 2

Fig. 10. Approximated regional vegetation signal with (grey lines) and without (black lines) op-
timized MHs during period 1 and 2 of 2009 using STILT/MYJ model (a, b) and the STILT/YSU
model (c, d) at Cabauw 20 m (a.g.l.). The observed vegetation signal was derived from mod-
elled and observed CO concentrations by Eqs. (9) and (10). Compared are also the modelled
vegetation signals with (orange pluses) and without (blue triangles) using optimized MHs. For
both of these variants we calculated the observed vegetation signals shown for comparison
with black and grey circles respectability. In the upper left corner of (a) and (c) are summary
statistics calculated for the full times series of the signal mismatch: STILT-“observations” to-
gether with STILT/“observation” squared correlation coefficient (r2). Statistics are shown for the
approximations without MH optimization.
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Fig. 11. Comparison of observed (OBS) and simulated nighttime CO concentrations using the
STILT/MYJ simulation (MYJ), the STILT/MYJ simulation with optimized MHs (MYJ KED) and
similarly the STILT/YSU simulations (YSU, YSU KED) during period 1 (a) and 2 (b). Boxes
denote the central 50 % of the data, whiskers are at ±1.5 times the inter quantile range and
outliers are shown as open circles. Black line within boxes indicate the median value. Filled
points show the mean values.
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Fig. 12. Comparison of observed (OBS) and simulated 20 m windspeed by STILT/MYJ (MYJ)
and STILT/YSU (YSU) both using KED optimized MHs at Cabauw. Results are shown for period
(P1) and period 2 (P2) shown as grey stripes in Fig. 9. Boxes denote the central 50 % of the
data, whiskers are at ±1.5 times the inter quantile range and outliers are shown as open circles.
Black line within boxes indicate the median value.
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b) period 2

Fig. 13. Observed and simulated CO2 time series for period 1 (a) and 2 (b) of 2009 at Cabauw
20 m (a.g.l.). Shown here is the STILT/YSU simulations for which deterioration in simulated
CO2 was most notable when using optimized MHs (blue triangles). Using additional nighttime
MHs observed at Cabauw to condition the KED optimization reduces the overcompensation in
period 1 notably (a, orange pluses). No such effect is observed in period 2 (b).
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Fig. 14. Comparison of STILT simulated surface influence using KED optimized MHs. Shown
are maps around the Cabauw tall tower (green triangle) in (a) and (c) together with polygons
indicating the area covered by particles with non-zero surface influence in the last 12 h before
arrival at Cabauw for the STILT/MYJ (blue lines) and STILT/YSU (red dashed lines) simulations.
These areas were approximated by convex hulls around horizontal particle distributions. Also
shown are strong point sources in the EDGAR emissions (black pluses) on 7 September 2009,
00:00 UTC (a, b) and 28 September 2009, 02:00 UTC (c, d) when deviations in fossil fuel
signals between the simulations were found most distinct (Fig. 9). Surface influence is also
shown for the simulations STILT/MYJ (blue crosses) and STILT/YSU (red crosses) as a function
of time before arrival at Cabauw (b, d). The optimized MHs using WRF/MYJ (blue pluses)
and WRF/YSU (red pluses) as external drift in KED are plotted for comparison. Although the
same conditioning data was used the estimated nighttime MHs differ notably in (b), leading to
corresponding differences in surface influences.
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