

Integrated non-CO2 Greenhouse gas Observing System

Verification of non-CO₂ greenhouse gas emissions of Europe Capabilities of the current and future surface network

Alex Vermeulen, Peter Bergamaschi, Martina Schmidt, Samuel Hammer, Ute Karstens, Lynn Hazan, Guillaume Monteil, InGOS modellers, InGOS station PI's

InGOS network and project

- EU FP7 Integrating Activity 2012-2015
 Focus on non-CO₂ Greenhouse Gases
 - Networking activities: historic and nrt time series
 - Access to facilities: visits, campaigns, database, analysis services, airborne facility
 - Research activities: instruments, model improvement
- 38 institutes, 15 countries, 24 observatories
- Strong links with ICOS
- Work in progress...

http://www.ingos-infrastructure.eu

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

Emission verification potential

- Climate change is real and does not go away
- GHG emission reductions needed
 - 100% by 2100
 - 30-70% by 2050
- Independent emission verification at country/state scale needed to check progress
- We cannot manage what we do not measure...
- Baseline observations needed now
- Model+Network development until 2020-2030
- Commitment period 2030-2050: systems ready.

Start with CH₄ and N₂O; CO₂ later

- Easier case for EV: Emission less variable in time and space than for CO₂
- Variation above background comparable to CO₂ (5-10%)
- Dense European network of continuous surface observations
- Long time series starting early '90s
- Also important for GHG reductions, CH₄ fast effect, N₂O also major ODS
- 'Ideal' tests for (systematic) model transport errors

Historic Data

24 stations, some co-located with NOAA flasks

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

integrated non-CO2 Greenhouse gas Observing System

Re-analysis of observation data

- GC-data: check/reprocess chromatograms
- Fix to current WMO calibration scale
- Re-assess precision with target measurements
- (Re)do drift corrections with surveillance target
- Assess scale transfer errors, uncertainty associated with non-linearity

AGU

Current availability of continuous CH4 observations in EuropeZeppelin: 2001Pallas: 2004

Lampedusa: 2006

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

Integrated non-CO2 Greenhouse gas Observing System

QC: intercomparisons

Manning et al, AMTD, in preparation Dedicated website: http://cucumbers.uea.ac.uk/

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

- **66** authors (on the AMT paper)
- 23 in situ atmospheric field stations in Europe.
- **11** measurement laboratories.
- **34** organisations.
- **16** countries.
- 9 atmospheric species' compatibility assessed.
- 9+ years of intercomparison measurements.
- 21 high pressure cylinders (Cucumbers) in 7 loops of 3 Cucumbers each.
- **405** graphs on the website.

Integrated non-CO2 Greenhouse gas Observing System

InGOS model simulations

Model	Institute	Resolution		Meteo.	²²² Radon		Mixing Height		
		horizontal	vertical	Re-analysis	Time range	res.	Time range	res.	
<u>STILT</u>	MPI-BGC	0.25° x 0.25°	20 lev. < 5km		2007-2011	1 hr	2006-2011	1 hr	
	МЕТ	0.35° x 0.23°	34 lev. < 8km	Unified Model	2011	2 hrs	2006-2011	1 hr	Europe
COMET	ECN	1° x 1°	2 in dyn.PBL	ERA-Interim	2006-2012	1 hr	2006-2012	1 hr	
TM5	JRC-IES	1° x 1° (Europe)	25 lev.	ERA-Interim	2006-2011	1 hr	2006-2011	3 hrs	
LMDz-TD LMDz-NP	LSCE	3.75° x 1.875°	39 lev.	ERA-I (nudged)	2006-2011	1 hr	2006-2011	3 hrs	global

- Eulerian and Lagrangian transport models
- Mixing height inferred from meteorological reanalysis or computed online

InGOS ²²²Radon flux map

•Radon source ~ Uranium content Geochemical Atlas of Europe (2005)

•Soil texture, porosity (Reynolds et al., 2000)

•Soil moisture

(Noah LSM, GLDAS Land Data Assimilation (Rodell et al., 2004)

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

spatial variations

temporal variations

Integrated non-CO2 Greenhouse gas Observing System

²²²Rn measurement network

Diurnal cycle of ²²²Radon and mixing height

integrated non-CO2 Greenhouse gas Observing System

Inversion "scenarios"

	station list	a priori inventory	period	InGOS data	NOAA+LSCE flask
S1-CH4	CH4_001B	EDGARv4.2FT-InGOS	2007-2011	preliminary	X
S2-CH4	CH4_002B	EDGARv4.2FT-InGOS	2010-2011	preliminary	X
S3-CH4	CH4_002B	no a priori	2010-2011	preliminary	X
S4-CH4	CH4_004	EDGARv4.2FT-InGOS	2006-2012	2014 release	х
S5-CH4	CH4_005	EDGARv4.2FT-InGOS	2010-2012	2014 release	X
S6-CH4	CH4_005	no a priori	2010-2012	2014 release	х
S7-CH4	CH4_007	EDGARv4.2FT-InGOS	2010-2012	2014 release	-

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

S2 CH₄

integrated non-CO2 Greenhouse gas Observing System

S5 CH₄

S6 CH₄

TM5-4DVAR 01/2010-12/2012 S6

Country aggregate emissions CH₄

Country aggregate emissions CH₄

CH₄ station timeseries Cabauw 200m 2011

European N₂O emissions - country totals

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00

¹³CH₄

Integrated non-CO2 Greenhouse gas Observing System

Conclusions I

- Synoptic variability of tracer mixing ratios is well represented in models
- Tall towers: model performance improves with increasing height
- Deficiencies to simulate diurnal cycle, especially at continental surface stations
- Model-data differences largest in nocturnal boundary layer
- Further evaluation of simulation of BLH dynamics and vertical gradients essential
- Continuous mixing height data (lidar/ceilometer) valuable tool for evaluation of model performance
- European sources of CH₄ should produce detecteable signals in ¹³CH₄ measurements
- Transport model errors are still an important source of uncertainty in inversion studies
 - ⇒ Selection of tracers at times of well-mixed boundary layer, i.e. afternoon at surface stations and night time at mountain sites
 - ⇒ Include uncertainty estimates from ²²²Rn comparison in specification of model representation error in inversions

Conclusions II

These preliminary results show the potential of top-down emission verification

- ⇒ Provided availability of a dense network of long-term continuous high quality observations
- ⇒ Reproduces both temporal and spatial variability of emissions from just the atmospheric observations
- \Rightarrow Results consistent with previous analyses (Bergamaschi et al, 2014)
- ⇒ Indication top down uncertainty lower than bottom-up uncertainties for CH_4 , even more so for N_2O
- More potential can be unleashed
 - ⇒ Improvement of BLH dynamics and vertical mixing in ATM's: enable use of night time obs
 - \Rightarrow Increase network coverage and density, using tall towers

THANK YOU!

The InGOS project receives funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 284274

AGU Fall 2014, A41N-04, 18 Dec 2014 08:45-9:00